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Abstract

A B0
s meson can oscillate into its anti-particle, the B̄0

s meson, before de-

caying. CP violation in this system is made possible by the presence of

amplitudes from both mixed and unmixed B0
s meson decays. The CP vio-

lating phase βs appears in the interference between the decay amplitudes.

The quantity sin(2βs) is expected to be small in the standard model. Thus,

measuring a large value for sin(2βs) would be an unequivocal sign of new

physics participation in the B0
s mixing loop diagram.

In this thesis, we present a latest measurement of sin(2βs), using 5.2 fb−1

of data collected at CDF from pp̄ collisions at a center of mass energy

of
√
s=1.96 TeV. A time-dependent angular analysis, with the production

flavor of the B0
s meson identified with flavor tagging methods, is used to

extract sin(2βs) from ∼6500 B0
s → J/ψφ decays. Other parameters of

interest, such as the B0
s lifetime and the decay width difference ∆Γ between

the heavy and light B0
s mass eigenstates are determined to high precision.

Also, the effect of potential contributions to the final state from B0
s → J/ψf0

and B0
s → J/ψK+K− decays is considered for the first time.

We present 68% and 95% confidence regions in the βs − ∆Γ plane. The

probability that the observed central value is a fluctuation of the data from

the standard model expected value of βs is calculated to be 44%. The

observed confidence region shows better agreement with the standard model

prediction than previous measurements.
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Chapter 1

Introduction

The standard model of particle physics, for the last several decades, has been immensely

successful in describing all observed interactions between particles. Yet with its many

input parameters, and inability to explain, for instance, the mass hierarchy of the

fundamental particles, many physicists believe the standard model to be an effective

theory that is only accurate in the energy regimes that have been probed thus far.

By building particle accelerators that make accessible higher energy regimes, physicists

hope to discover a fundamental theory of nature, of which the standard model is only

a low energy approximation.

Signs of the structure of a higher energy theory may be accessible at currently

available energies. Heavy, non-standard model particles could be off-shell contributors

in non-tree level loop processes, altering decay rates from their standard model pre-

dictions. The measurement described in this thesis is of a phase that is sensitive to

non-standard model contributions.

1.1 The standard model

The standard model (SM) is a quantum field theory which incorporates both quantum

mechanics and special relativity [1]. It describes three of the four known forces: the

strong force and the electroweak (electromagnetic and weak) force. The last force,

gravity, is not included in the SM. The interactions of the building blocks of matter,

the quarks and leptons (electron, muon, tau, neutrinos), as well as those of the force

mediators (photon, W and Z bosons, gluons) are described by the SM. Photons are

1
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Generation 1 Generation 2 Generation 3

charged leptons electron (0.000511) muon (0.106) tau (1.78)

neutrinos νe (∼0) νµ (∼0) ντ (∼0)

up-type quarks up (0.0015-0.0033) charm (1.27) top (171.2)

down-type quarks down (0.0035-0.0060) strange (0.104) bottom (4.2)

Table 1.1: The three generations of quarks and leptons in the standard model, with

masses in GeV/c2.

the force mediators for electromagnetism, W and Z for the weak force, and gluons for

the strong force. In this thesis, we are mainly concerned with the weak interaction.

The quarks, leptons, and the leptons’ associated neutrinos can be arranged into

generations as shown in Table 1.1 including particle masses in GeV/c2 [2]. The standard

model does not explain why the fundamental particles’ masses span such a broad range,

from the nearly massless neutrinos to the the top quark, which is approximately as

heavy as a gold nucleus.

The first generation particles constitute most of the matter than can be seen outside

of particle accelerators. The particles in the second and third generations are highly

unstable with heavier particles decaying into lighter ones. In order to study their prop-

erties, we must produce them via high energy interactions in the controlled environment

of a particle detector, where they can be studied as they decay. The standard model

does not explain why the quark and lepton masses span such a broad ranges, from

nearly massless neutrinos to the the top quark, which is approximately as heavy as a

gold nucleus.

Quarks and leptons are all fermions, particles with an intrinsic spin of 1/2. Quarks

carry electric charge, weak isospin, and color charge, and interact via the electromag-

netic, weak, and strong interactions. The strong interaction causes quarks to bind to

each other in mesons or baryons, color neutral conglomerates of two or three quarks.

The electric charge of the up-type quarks is +2/3 and −1/3 for the down-type quarks.

The charged leptons have charged −1 and are colorless. They do not interact strongly

but only via the electromagnetic or weak interaction. Neutrinos are electrically neural,

and therefore interact only via the weak interaction, making them notoriously difficult

to detect [1].

2



1.1 The standard model

Each of the particles listed in Table 1.1 has an antiparticle, a particle with the same

mass but opposite charge. Other quantum numbers, such as the color charge, can also

be reversed when translating a particle into an antiparticle.

1.1.1 The Weak Interaction and the CKM Matrix

The W and Z gauge bosons, the mediators of the weak interaction, are both spin-1

particles. The W carries electric charge ±1, and the Z is neutral. Unlike the other

force-mediating gauge bosons, the photon and gluon, the W and Z are massive: 80.4

and 91.2 GeV/c2. The amplitude for a tree level interaction via a gauge boson is

proportional to 1/(M2 − q2), where M is the mass of the gauge boson and q2 is the

four momentum. A low q2 or, equivalently, long range, the mass of the gauge boson

makes amplitude and hence the force of the weak interaction small. This explains why

the weak force is short-range, while the massless photon gives the electromagnetic force

infinite range. The strong force is short-range in spite of the massless gluon, but the

reasons for this are beyond the scope of this thesis [1].

The weak force has two special properties, with experimental effects that were

inexplicable by the theoretical framework at the time of their observation. The first is

that the weak force maximally violates parity conservation. As we will discuss in more

detail in Sec. 1.2, the parity operator transforms a particle’s momentum vector ~p to

−~p. The parity operator does not affect the particle’s spin, though, so the helicity of

a particle (~p · ~s, where ~s is the spin direction) will flip under a parity transformation.

Parity is conserved under the strong and electromagnetic interactions, but is maximally

violated by the weak interaction. The effect of this is that the W will only couple to

left handed particles and right handed antiparticles, where “left-handed” and “right-

handed” refer to sign of the chirality. The Z, one the other hand, can couple to particles

with left- or right-handed chirality, but not with equal strength [1].

Cronin and Fitch first demonstrated parity violation in the weak interaction in

1964 [3] in the neutral kaon system. In the kaon system, the long-lived CP odd state

decays to three pions and the short-lived CP even state decays to two pions. In the

absence of CP violation, at a sufficiently long distance from the point where the kaons

are produced, only the decay products from the CP odd long-lived states should be

present, as the CP even states will have already decayed. However, Cronin and Fitch’s

3
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experiment found a small fraction of CP even decay products far from the production

point, indicating that CP violation occurs in the neutral kaon system.

Interactions involving a W are referred to as flavor-changing charged currents. A

down-type quark can decay in a W and an up-type quark or vice versa. The vertex

for this process is shown in Figure 1.1. Note that electric charge is conserved in this

process. For example, a +1/3 down-type quark can have a vertex with a W− and a

+2/3 up-type quark. Since (+1/3)+(−1)+(+2/3)=0, no charge is lost or gained at

the vertex. The neutral Z boson cannot form a flavor-changing vertex that conserves

electric charge, resulting in the absence of flavor-changing neutral currents in the SM at

tree-level. The Z boson could be exchanged, without violating charge conservation, in

vertices linking up-type quarks to other up-type quarks, or down-type quarks to other

down-type quarks. However, such vertices do not arise from the electroweak Lagrangian

and thus do not appear in the standard model.

iu
j

d

W

ij
V

Figure 1.1: Vertex for up-type quark decaying to a down-type quark through emission of

a W boson.

The interaction Lagrangian for the process represented in Fig. 1.1 is the following:

L = − g

2
√
2
[ūiγ

µ(1− γ5)d′iW
+
µ + h.c.], (1.1)

where “h.c.” is the Hermitian conjugate and summation over indices i and j is implied.

The constant g sets the overall scale for the strength of the coupling. ui and dj are

4
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1.1 The standard model

Dirac spinors, and γµ and γ5 are Dirac matrices [1].

One notices that the down-type quarks are primed, due to the fact that the quark

mass eigenstates d, s and b are not the same as the quark weak eigenstates. A rotation

must be performed in order to translate the mass eigenstates into the weak eigenstates.

This rotation defines the Cabibbo-Kobayashi-Maskawa (CKM) matrix [4]:





d
′

s
′

b
′



 =





Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb









d
s
b



 . (1.2)

Using the CKM matrix, we can rewrite the interaction Lagrangian as:

L = − g

2
√
2
[ūiγ

µ(1− γ5)VijdjW
+
µ + h.c.]. (1.3)

Thus, the coupling between two quarks ūi and dj is proportion to the matrix element

Vij . The standard model makes no prediction for the size of the CKM matrix elements.

Experimentally, it has been shown that the CKMmatrix is approximately a unit matrix;

the dominant quark transitions are along the diagonal. The fact that the off-diagonal

elements are not exactly zero makes CP (charge-parity) violation possible, as we will

see in Sec. 1.2.

The CKM matrix is unitary by construction, a requirement for conservation of

probability. An (n×n) unitary matrix can be described by n2 real parameters. Of these

parameters, (2n−1) can be absorbed into the phases of the quark fields, leaving (n−1)2

physically meaningful parameters [5]. The 3×3 CKM matrix can be parameterized by

four independent parameters: three rotational angles (θ12, θ23, θ13) and one phase (δ):

VCKM =





c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13
s12s23 − c12c23s13e

iδ −c12s23 − s12c23s13e
iδ c23c13



 , (1.4)

where cij and sij are the sine and cosine of the respective rotational angles.

The Wolfenstein parameterization of the CKM matrix [6] uses a different set of

parameters, emphasizing the hierarchy of the matrix. It uses the four parameters

A = sin(θ23)/λ
2, λ = sin(θ12), ρ = sin(θ13) cos(δ)/Aλ

3 and η = sin(θ13) sin δ/Aλ
3.

5
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Matrix elements can be expanded in λ ≈ 0.23, allowing a comparison of the relative

magnitudes of the matrix elements. Dropping terms above O(λ5), we have

VCKM ≈















1− λ2

2 − λ4

8 λ Aλ3(ρ− iη)

−λ+ A2λ5

2 [1− 2(ρ+ iη)] 1− λ2

2 − λ4

8 (1 + 4A2) Aλ2

Aλ3[1− (1− λ2

2 )(ρ+ iη)] −Aλ2 + Aλ4

2 [1− 2(ρ+ iη)] 1− A2λ4

2















(1.5)

It is clear that the diagonal elements of the matrix are approximately one, and the

off-diagonal elements are small, suppressing decays between different quark generations.

We can use the unitarity property of the CKM matrix

3
∑

j=1

VijV
∗
kj = δik (1.6)

to derive a series of unitarity relations. For example, from the first and third columns

of the CKM matrix we can derive

VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0. (1.7)

These relations can be represented graphically as a triangle in the complex plane,

where (VijV
∗
kj) define the sides of the triangle. The graphical representation of Equa-

tion 1.7 is shown in Fig. 1.2. The triangle can be rotated and the sides scaled such that

the longest side extends from the origin to (1, 0), and the apex’s coordinates are given

by (ρ̄, η̄), where ρ̄ and η̄ are related to ρ and η by a factor of (1− λ2/2). The result is

shown in Fig. 1.3.

The angles of the triangle can be defined by ratios of the lengths of the sides,

which are given as products of CKM matrix elements. The goal of CKM physics is

to precisely experimentally determine the size of all the angles and sides of a unitarity

triangle in multiple ways. The unitarity relation will then be over-constrained. If a

discrepancy is observed between two methods of measuring a CKM angle or side, it

indicates that one of the processes used for the measurement is affected by non-standard

model physics. Thus, consistency with the standard model for all the processes that

yield the measurements can be tested.

6
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ubV*
udV Vtd

VcdV

Vtb
*

cb
*

αα

γγ ββ

Im

Re

Figure 1.2: Unitarity triangle from the first and third columns of the CKM matrix.

Vtd

αα

γγ ββ

Vub
* /λλVcb

* /λλVcb
*

(0,0) (1,0) ρρ

ηη (ρ,η)(ρ,η)

Figure 1.3: Unitarity triangle from the first and third columns of the CKM matrix, scaled

in terms of Wolfenstein parameters.
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1. INTRODUCTION

Referring back to Eq. 1.6, we see that there are six unitarity triangles. The unitarity

triangle shown in Fig. 1.7 has been well-studied experimentally, in part due to its

conveniently large angles. However, in this thesis, we are interested in the unitarity

triangle coming from the second and third columns of the CKM matrix:

VusV
∗
ub + VcsV

∗
cb + VtsV

∗
tb = 0. (1.8)

In particular, we wish to measure the angle equivalent to β in Fig. 1.7, referred to

as βs. The unitary triangle containing βs is shown in Fig. 1.4 (not to scale). This is a

challenging experimental endeavor, because βs is very small. We can get a rough idea

of the size of βs in two steps. First, we describe βs in terms of the sides of the unitarity

triangle where it appears:

s
SMββ

ubV*
usV

Vcs Vcb
*

Vts Vtb
*

Figure 1.4: Unitarity triangle from the second and third columns of the CKM matrix.

βs = arg

(

−VtsV
∗
tb

VcsV ∗
cb

)

. (1.9)

We can then examine the O(λ) of the CKM matrix elements that define βs, using the

Wolfenstein parameterization given Eq. 1.5. We find that

βs = arg

(−VtsV ∗
tb

VcsV ∗
cb

)

∼ λ2 < 0.1. (1.10)

The standard model expectation, based on indirect measurements that constrain the

unitary relation, is βs=0.02. We return to the identification of the angle βs as a “CP -

violating phase” in the next section.
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1.2 CP Violation

CP violation refers to an absence of symmetry under a combined charge and par-

ity transformation. The so-called charge conjugation C transforms a particle into its

antiparticle, but leaves momentum unaffected. The parity transform P is a spatial

inversion, transforming ~x to −~x. As stated previously, the weak interaction maximally

violates parity conservation. The standard model respects CPT symmetry, where T

is the time reversal transformation than maps t to -t. This implies that if CP is vi-

olated, then T must be as well in order to preserve the symmetry of the combined

transformation.

CP violation can manifest itself in different ways in physical processes. A common

thread exists, though: in order for CP to be violated, an interfering amplitude must

exist in addition to the dominant decay amplitude, to provide a phase that flips signs

under the CP transformation [5].

Another way of stating the condition for CP violation is to demand that the area

of the unitarity triangle be non-zero, as we will now explain. A phase convention

independent measure of CP violation, which is related to the area of the unitarity

triangles, is the Jarlskog invariant J [7]:

J = |Im(VijV
∗
ilV

∗
kjVkl)|,

i 6= k, j 6= l. (1.11)

The condition that i 6= k and j 6= l (and the fact that there are only three generations)

guarantees that for any choice of i, j, k, J contains at least two off-diagonal CKM

elements. This corresponds to interference between the dominant amplitude and a

generation-changing one, or between two generation-changing amplitudes [5].

Perhaps more intuitively, one can parameterize the Jarlskog invariant in terms of

the Wolfenstein parameters and approximate it as:

J ≈ A2ηλ6. (1.12)

In order for CP violation to occur, the parameter η, related to the “height” of the

unitarity triangle in Fig. 1.7 must be non-zero. If η is zero, the size of the Jarlskog

9
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invariant is also zero and CP violation does not occur. η is the magnitude of the

imaginary components of off-diagonal elements of the CKMmatrix, as shown in Eq. 1.5.

As mentioned before, the small but non-zero off-diagonal elements are necessary for CP

violation to occur, and a factor of i must be present to give the unitary triangles some

“height” in the complex plane! Furthermore, we can determine the relative size of the

CP asymmetries in different processes, based on the order of λ multiplying (iη) in the

CKM elements involved in a processes.

CP violation can occur in decay (also called direct CP violation), in neural meson

mixing, or in the interference between direct decay and decays via mixing. Before

describing the different classes of CP violation, we first give an overview of neutral

meson mixing [8].

1.2.1 Phenomenology of Neutral Meson Mixing

Neural meson mixing is a quantum mechanical process where a particle transforms into

its antiparticle, via a “box” diagram, a one loop process. The box diagrams for neutral

B oscillation are shown in Fig. 1.5. Oscillation occurs via the exchange of W bosons

and up-type quarks. The oscillation frequency goes as m2
q/m

2
W . The top quark, by far

the most massive quark, gives the dominant contribution to the oscillation amplitude.

In some extensions to the standard model, though, non-SM heavy particles could be

exchanged in addition to the up-type quarks in Fig. 1.5. This would alter the amplitude

associated with B0
q B̄

0
q oscillation from the standard model prediction, and could also

affect the participating weak CP violating phases [9, 10].

b

bq

q

u,c,t u,c,t

W

W

tbV

tbV

tdV

tdV

q
0B q

0
B

b

bq

qu,c,t

u,c,t

WW

tbV

tbV

tdV

tdV

q
0B q

0
B

Figure 1.5: Leading order diagrams for B meson mixing.

For convenience, we describe the case of the B0
s system, but the following discussion

could equally well apply to B0, K0, or D0 mesons.
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1.2 CP Violation

A bottom quark and a strange quark can bind together to form a neutral B0
s meson,

or its antiparticle, B̄0
s

|B0
s 〉 = |b̄s〉, |B̄0

s 〉 = |bs̄〉. (1.13)

B0
s and B̄0

s can both decay to a set of final states |f〉. The total Hamiltonian can be

broken into two parts,

H = H0 +Hweak. (1.14)

|B0
s 〉 and |B̄0

s 〉 are eigenstates of H0, the strong and electromagnetic components of the

total Hamiltonian. Hweak contains the weak component of the Hamiltonian, which is

responsible for mixing and decay to the final state. After a time t, an initial B0
s or B̄0

s

will be in the state

|ψ(t)〉 = a(t)|B0
s 〉+ b(t)|B̄0

s 〉+
∑

f

c(t)|f〉, (1.15)

a superposition of the two flavor eigenstates B0
s or B̄0

s and the states |f〉 to which B0
s

and B̄0
s can decay.

The time-evolution can be equivalently described by the time-dependent Schrodinger

equation, which removes explicit dependence on |f〉:

i
d

dt

(

|B0
s (t)〉

|B̄0
s (t)〉

)

=

(

M− i

2
Γ

)(

|B0
s (t)〉

|B̄0
s (t)〉

)

(1.16)

where

H =

(

M− i

2
Γ

)

=

(

M M12

M∗
12 M

)

− i

2

(

Γ Γ12

Γ∗
12 Γ

)

(1.17)

and the mass matrix M and decay matrix Γ are hermitian. The diagonal elements of

the mass matrix are related to the mass eigenvalues of H0. In quantum mechanics,

off-diagonal elements are always related to transitions between states. In this case,

the off-diagonal elements are related to the meson oscillation via off-shell intermediate

11
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states. The diagonal elements of the decay matrix are due to on-shell decays of B0
s → f

and B̄0
s → f̄ , and the off-diagonal elements are due to the transitions B0

s → f → B̄0
s

and B̄0
s → f → B0

s .

Diagonalizing the Hamiltonian, one can extract the mass eigenstates of H,

|BH,L
s 〉 = 1

√

|p|2 + |q|2
(p|B0

s 〉 ∓ q|B̄0
s 〉), (1.18)

whereH is the heavy state, and L is the light state, and p and q describe the proportions

of B0
s and B̄0

s in the mass eigenstate. The experimentally observable mass difference

is defined as ∆ms = mH −mL, the decay width difference as ∆Γ = ΓH − ΓL, and the

average decay width as Γ = (ΓH + ΓL)/2. One can also solve for the ratio q/p:

(

q

p

)2

=

∣

∣

∣

∣

∣

M∗
12 − i

2Γ
∗
12

M12 − i
2Γ12

∣

∣

∣

∣

∣

(1.19)

Translating back from mass eigenstates to flavor eigenstates, we can now express

the time dependence of the flavor eigenstates, using information gleaned from studying

the mass eigenstates. After time t, an initially pure B0
s or B̄0

s will be:

|B0
s (t)〉 = g+(t)|B0

s 〉 −
q

p
g−(t)|B̄0

s 〉, (1.20)

|B̄0
s (t)〉 = g+(t)|B̄0

s 〉 −
p

q
g−(t)|B0

s 〉 (1.21)

where

g± =
1

2
(e−imH t−

1

2
ΓH t ± e−imLt−

1

2
ΓLt). (1.22)

With this information, we can calculate the probability of the initial B0
s or B̄0

s being

pure B0
s or B̄0

s at a later time t :

12



1.2 CP Violation

Prob〈B0
s (t)|B0

s (0)〉 =
1

4
[e−ΓH t + e−ΓLt + 2e−Γtcos(∆mst)] (1.23)

Prob〈B̄0
s (t)|B0

s (0)〉 =
1

4

∣

∣

∣

∣

p

q

∣

∣

∣

∣

[e−ΓH t + e−ΓLt − 2e−Γtcos(∆mst)] (1.24)

Prob〈B0
s (t)|B̄0

s (0)〉 =
1

4

∣

∣

∣

∣

q

p

∣

∣

∣

∣

[e−ΓH t + e−ΓLt − 2e−Γtcos(∆mst)] (1.25)

Prob〈B̄0
s (t)|B̄0

s (0)〉 =
1

4
[e−ΓH t + e−ΓLt + 2e−Γtcos(∆mst)]. (1.26)

In the case of the B0
s system, the mixing frequency ∆ms is very rapid, ∆ms =

17.77±0.12 ps−1, as opposed to ∆md ≈ 0.5 ps−1 for B0 mixing. As a result, the

probability that the initial particle will have oscillated to its antiparticle at decay time

is ∼50% [5].

1.2.2 Direct CP Violation

Direct CP violation, or CP violation in decay occurs when the condition

|Āf̄/Af | 6= 1 (1.27)

is met, where Āf̄ = 〈f̄ |H|B̄〉 and Af = 〈f |H|B〉. The standard model expectation for

direct CP violation in the B0
s system is small, on order of λ2, where λ is the Wolfenstein

parameter [8].

1.2.3 CP Violation in Mixing

CP violation occurs in mixing when

|q/p| 6= 1 (1.28)

From Eq. 1.19, |p/q| is dependent on M (∗)
12 and Γ

(∗)
12 . It can be shown that CP violation

in mixing occurs when

Im(M12Γ
∗
12) 6= 0. (1.29)
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In other words, M12 and Γ12 cannot be collinear in the complex plane [5]. This induces

a time-dependent decay rate asymmetry

A =
dΓ/dt(B → f)− dΓ/dt(B̄ → f̄)

dΓ/dt(B → f) + dΓ/dt(B̄ → f̄)
=

1− |q/p|4
1 + |q/p|4 . (1.30)

The phase associated with CP violation in mixing in the B0
s system has as observed

upper limit of φs ∼0.01 through the measurement of the asymmetry defined in Eq. 1.30

on semileptonic B0
s decays. The standard model expectation, φSMs , is approximately

0.004 [8].

1.2.4 CP Violation in the Interference Between Mixing and Decay

CP violation in the interference between mixing and decay refers to the case when the

particle and anti-particle can both decay to the same final state, and oscillation between

particle and anti-particle can occur before the decay. A schematic of this process is

shown in Fig. 1.6 for B0(B̄0) → J/ψK0
S and B0

s (B̄
0
s ) → J/ψφ.

J/B0 ΨΨ

B
0

J/B0 ΨΨKS
0

B
0

S

S
φφ

Figure 1.6: Schematic of the interfering amplitudes for direct decays and decays via

mixing.

The Feynman diagrams for the interfering processes B0
s → J/ψφ and B0

s → B̄0
s ,

which can also decay to J/ψφ, are shown in Fig. 1.7.

b

u,c,t u,c,t

V

V

b

BB
0 0

ts

ts s

s

S S

W

W
φφ

b c

W
J/

B
0

Ψ

s

c
Ψ

Vcb

s s

S

Figure 1.7: Leading order diagrams for B0
s → B̄0

s , which can decay to J/ψφ, and B0
s →

J/ψφ. The interference of these processes can produce a CP asymmetry.
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The CP violation in the interference of direct decays and decays via mixing is

defined by

Im(λf ) 6= 0 (1.31)

where

λf =
q

p

Āf
Af

. (1.32)

The CP asymmetry in this case is

A =
dΓ/dt(B → fCP )− dΓ/dt(B̄ → fCP )

dΓ/dt(B → fCP ) + dΓ/dt(B̄ → fCP )
, (1.33)

where fCP is a CP pure final state. This reduces to a very simple form if direct CP

violation and violation in mixing are small, and ∆Γ is close to zero:

A = −Imλf sin(∆mst) (1.34)

We can, with great ease, define the CP violating phase βs by defining

λf =
q

p

Āf
Af

= e−2iβs . (1.35)

We will now demonstrate that the CP violating phase that is produced by the

interference of decays with and without mixing is, in fact, the same βs defined by the

CKM unitarity triangle.

Assuming that CP violation in mixing is small, we can make the following approx-

imations:

∆ms = mH −mL ≈ 2M12, ∆Γ = ΓH − ΓL ≈ 2|Γ12| cos(φs) (1.36)

where φs, the CP violating phase in mixing, is defined by
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M12

Γ12
= −

∣

∣

∣

∣

M12

Γ12

∣

∣

∣

∣

eiφs (1.37)

Eq. 1.19 can be expanded such that

λf = e−iφM
(

1− 1

2

∣

∣

∣

∣

Γ12

M12

∣

∣

∣

∣

sinφs

)

Āf
Af

= e−2iβs (1.38)

where φM is the (not CP violating) mixing phase. The quantity e−iφM is given as

V ∗
tbVts/VtbV

∗
ts, as one can guess from looking at the vertices in the mixing box diagram.

The phase φs is expected to be small, approximately 0.004, allowing us to drop the

second term in Eq. 1.38. Note Āf/Af can be expressed in terms of the contributing

CKM matrix elements in the b̄ → c̄cs̄ transition. The dominant CKM dependence for

this transition is on (V ∗
cbVcs) (or (VcbV

∗
cs) for the b→ c̄cs transition). λf becomes:

λf =
V ∗
tbVts
VtbV

∗
ts

VcbV
∗
cs

V ∗
cbVcs

= e−2iβs . (1.39)

Taking the imaginary part of λf , we see that

Im(λf ) = − sin(2βs). (1.40)

The CKM angle βs given in Eq. 1.10 is indeed equivalent to the CP violating phase

from the interference of direct decays and decays via mixing!

The standard model expectation is βs ≈ 0.02. Measuring a large value of βs would

be a clear sign of new physics participation in the mixing box diagram.

It is worth noting that a large, non-standard model CP violating phase φNP would

affect βs and φs in the same way. We choose our sign conventions such that

φs = φSMs + φNP 2βs = 2βSMs − φNP . (1.41)

Both βs and φs are predicted to be small in the standard model, so the new physics

phase will dominate, allowing us to equate the two CP violating phases, and to relate

another important quantity, ∆Γ, to βs.

2βs ≈ −φs, ∆Γ ≈ 2|Γ12| cos(2βs). (1.42)
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1.3 Analysis of Scalar to Vector-Vector Decays

1.3 Analysis of Scalar to Vector-Vector Decays

We now turn to the phenomenology of measuring βs using B
0
s → (B̄0

s ) → J/ψφ decays

(branching fraction = 0.00093±0.00033), with the J/ψ decaying to µ+µ− (branching

fraction = 5.93±0.06%), and the φ decaying toK+K− (branching fraction = 48.9±0.5).

Eq. 1.33 gives the form of a measurable CP asymmetry produced by CP violation in the

interference between direct decays and decays via mixing. The asymmetry is accessible

by measuring differential decay rates of initial B0
s and B̄0

s to a CP pure final state.

Unfortunately, B0
s → J/ψφ decays do not result in a CP pure final state, but to

an admixture of CP -odd and CP -even states. The B0
s meson, a spin-0 pseudoscalar,

decays to J/ψ and φ, both spin-1 vector particles. The spins of the vector particles add

to produce multiple orbital angular momentum final states, one CP -odd and two CP -

even. An angular analysis is used to determine relative CP -odd and even proportions

of the J/ψφ final state [11, 12, 13].

Combining the angular momenta from two spin-1 particles, the angular momentum

in the final state includes contributions from L=0, 1, and 2. These angular states are

also referred to as S -wave (L=0), P -wave (L=1) and D -wave (L=2). The L=0 and

L=2 states are CP even, and the L=1 state is CP odd.

The CP of the final angular momentum states can be determined using CPtot =

CP1CP2(−1)L. J/ψ has C=−1 and P=−1, φ has C=−1 and P=−1, and f0 and non-

resonant K+K− have C=+1 and P=+1. We find that for the J/ψφ final state, CPtot

is even for L=0, odd for L=1, and even for L=2.

An angular analysis can be used to measure the relative proportions of CP -odd and

CP -even in the final state, and allow βs to be extracted. We use flavor-tagging, dis-

cussed in the experimental methods section, to increase sensitivity to βs by determining

whether the decaying particle was a B0
s or B̄0

s at production.

With the goal of determining the relative proportion of CP -even to CP -odd in the

final state, it is convenient to choose a basis where the measured angular amplitudes can

be directly related to CP states. The transversity basis satisfies this requirement [11].

It identifies three “transversity” amplitudes A0, A|| and A⊥, according to the relative

linear polarizations of the vector particles. For A0, the vector particles are longitudi-

nally polarized, for A||, their polarization is transverse to their direction of motion, and

parallel to each other, and for A⊥, their polarization is transverse to their direction of

17



1. INTRODUCTION

motion and perpendicular to each other. The transversity amplitudes can be related

to the CP. The amplitude A⊥ is CP odd, while A|| and A0 are CP even. We choose

the normalization |A0|2 + |A|||2 + |A⊥|2 = 1.

Each amplitude has an associated phase. We have the freedom to set one phase to

zero and retain two relative phases. We set δ0 = arg(A0)=0, and retain δ|| = arg(A||)

and δ⊥ = arg(A⊥).

We also define a set of three transversity angles to describe the final state angular

distribution, shown in Fig. 1.8 [11]. The +x axis is aligned with the direction of motion

of the φ in the J/ψ rest frame, and the K+ and K−, decaying from the φ, define the

xy plane, with the direction of the K+ in the +y direction. θ and φ are transversity

angles in the J/ψ rest frame. θ is the polar angle, drawn from the +z axis to the µ+

momentum vector. φ is the azimuthal angle, drawn from the +x axis counter-clockwise

to the projection of the µ+ momentum vector in the xy plane. ψ is a helicity angle in

the φ rest frame, drawn from the axis defined by the negative of the J/ψ momentum

direction to the K+ momentum direction. In the following sections, we often refer to

the set of angles as ~ρ = (cos(θ), φ, cos(ψ)).

Figure 1.8: The chosen angular basis includes θ and φ, defined in the J/ψ rest frame,

and ψ, defined in the φ rest frame.

The angular and time dependence of B0
s → J/ψφ decays is contained in the formulae
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1.3 Analysis of Scalar to Vector-Vector Decays

for the differential decay rate d4Γ(~ρ, t)/d~ρdt. The differential decay rate is also depen-

dent on βs, and measuring the decay rate allows βs to be measured as well [11, 12, 13].

The differential decay rate for B0
s and B̄0

s is equivalent to a probability density

(also time and angularly dependent) for B0
s and B̄0

s [11]. The probability densities are

easily expressed in a compact form, so we use this description here. The equivalence of

d4Γ(~ρ, t)/d~ρdt to the probability density, with full expansion of the time and angular

dependence, is given in Appendix A.

1.3.1 Decay rate

In the transversity basis, the probability density for B0
s or B̄0

s is succinctly expressed

as [14]

PB(θ, φ, ψ, t) =
9

16π
|A(t)× n̂|2

PB̄(θ, φ, ψ, t) =
9

16π
|Ā(t)× n̂|2, (1.43)

where the dependence on two of the three transversity angles is contained in the unit

vector n̂

n̂ = (sin θ cosφ, sin θ sinφ, cos θ), (1.44)

and the transversity amplitudes (A0, A||, A⊥) and the dependence on the remaining

transversity angle ψ is contained in the complex vector A:

A(t) =

(

A0(t) cosψ,−
A‖(t) sinψ√

2
, i
A⊥(t) sinψ√

2

)

Ā(t) =

(

Ā0(t) cosψ,−
Ā‖(t) sinψ√

2
, i
Ā⊥(t) sinψ√

2

)

. (1.45)

The probabilities, and thus the transversity amplitudes, are normalized such that

∫ ∫ ∫ ∫

∑

j=B,B̄

Pj(ψ, θ, φ, t)d(cos ψ)d(cos θ)dφdt = 1. (1.46)
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The details of this normalization will be discussed in Sec. 4.2.1.

The time dependence of the transversity amplitudes can be calculated from the

transition of the flavor eigenstates given in Eq. 1.22 to the final state fi:

Ai(t) = 〈fi|H|B0
s 〉〈B0

s |B0
s,phys(t)〉+ 〈fi|H|B̄0

s 〉〈B̄0
s |B0

s,phys(t)〉 (1.47)

and

Āi(t) = 〈fi|H|B̄0
s 〉〈B0

s |B0
s,phys(t)〉+ 〈fi|H|B̄0

s 〉〈B̄0
s |B̄0

s,phys(t)〉. (1.48)

where B0
s,phys is the state of the particle at time t, in some superposition of mixed and

unmixed. Explicitly expressing the time evolution, the amplitudes can be shown to be:

Ai(t) =
e−imte−Γt/2

√

τH + τL ± cos 2βs (τL − τH)

[

E+(t)± e2iβsE−(t)
]

Ai(t = 0),

Āi(t) =
e−imte−Γt/2

√

τH + τL ± cos 2βs (τL − τH)

[

±E+(t) + e−2iβsE−(t)
]

Ai(t = 0), (1.49)

where

E±(t) ≡
1

2

[

e+(
−∆Γ

4
+i∆ms

2 )t ± e−(
−∆Γ

4
+i∆ms

2 )t
]

. (1.50)

A useful way of expressing the time evolution of the probabilities is in terms of

the time evolution of the CP -odd and even components. We start by separating the

complex vector A into its CP -even (+) and CP -odd (−) components

A(t) = A+(t) +A−(t), Ā(t) = Ā+(t) + Ā−(t). (1.51)

Then, we separate the time evolution, with the remaining term depending only on on

the values of the transversity amplitudes at t=0. For the CP -even terms, we obtain

A+(t) = A+f+(t) =

(

A0 cosψ,−
A‖ sinψ√

2
, 0

)

· f+(t)

Ā+(t) = Ā+f̄+(t) =

(

A0 cosψ,−
A‖ sinψ√

2
, 0

)

· f̄+(t), (1.52)
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1.3 Analysis of Scalar to Vector-Vector Decays

and for the CP -odd terms,

A−(t) = A−f−(t) =

(

0, 0, i
A⊥ sinψ√

2

)

· f−(t)

Ā−(t) = Ā−f̄−(t) =

(

0, 0, i
A⊥ sinψ√

2

)

· f̄−(t). (1.53)

Expanding the probability density for the B0
s and B̄0

s states gives

PB(θ, ψ, φ, t) =
9

16π

{

|A+(t)× n̂|2 + |A−(t)× n̂|2 + 2Re([A+(t)× n̂] · [A∗
−(t)× n̂])

}

=
9

16π

{

|A+ × n̂|2|f+(t)|2 + |A− × n̂|2|f−(t)|2
}

+
9

16π

{

2Re((A+ × n̂) · (A∗
− × n̂) · f+(t) · f∗−(t))

}

(1.54)

and

PB̄(θ, ψ, φ, t) =
9

16π

{

|Ā+(t)× n̂|2 + |Ā−(t)× n̂|2 + 2Re[Ā+(t)× n̂] · [Ā∗
−(t)× n̂])

}

=
9

16π

{

|A+ × n̂|2|f̄+(t)|2 + |A− × n̂|2|f̄−(t)|2
}

+
9

16π

{

2Re((A+ × n̂) · (A∗
− × n̂) · f̄+(t) · f̄∗−(t)

}

. (1.55)

The non-interfering time-dependent terms are:

|f̄±(t)|2 =
1

2

(1± cos 2βs)e
−ΓLt + (1∓ cos 2βs)e

−ΓH t ± 2 sin 2βse
−Γt sin∆mst

τL(1± cos 2βs) + τH(1 ∓ cos 2βs)
,

|f±(t)|2 =
1

2

(1± cos 2βs)e
−ΓLt + (1∓ cos 2βs)e

−ΓH t ∓ 2 sin 2βse
−Γt sin∆mst

τL(1± cos 2βs) + τH(1∓ cos 2βs)
(1.56)

and the interference terms are:

f̄+(t)f̄−
∗
(t) =

−e−Γt cos∆mst− i cos 2βse
−Γt sin∆mst+ i sin 2βs(e

−ΓLt − e−ΓH t)/2
√

[(τL − τH) sin 2βs]
2 + 4τLτH

,

f+(t)f
∗
−(t) =

e−Γt cos∆mst+ i cos 2βse
−Γt sin∆mst+ i sin 2βs(e

−ΓLt − e−ΓH t)/2
√

[(τL − τH) sin 2βs]
2 + 4τLτH

.

(1.57)
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A simplification to the probability density that is sometimes utilized is the so-called

“untagged” version, where we do not use flavor tagging to determine whether the B

meson was a B0
s or B̄0

s at production. This simplification removes sensitivity to any

terms containing ∆ms. When the probability density function for the particle and

the anti-particle cannot be distinguished from each other, we must use the summed

probability of a B0
s or B̄0

s . In this case, all the terms containing ∆ms cancel, because

they have the opposite signs for B0
s and B̄0

s .

1.3.2 Decay rate including a K+K−/f0 S-wave contribution

An additional contribution to the final state comes from non-resonant decays of B0
s →

(B̄0
s ) → J/ψK+K− or B0

s → (B̄0
s ) → J/ψf0. Both states are approximately flat

in the region of the resonant φ invariant mass. Since they do not have an easily

detectable shape, there is a danger of identifying decays to the non-resonant or f0 state

as B0
s → J/ψφ decays, contaminating the signal, and disturbing the measurement of

the value of βs. The contributions of f0 and non-resonant K+K− in the measurement

of βs are considered for the first time in this thesis. Both the f0 and non-resonant

K+K− are spin 0, and so the angular momentum of the final state, combined with the

spin of the J/ψ, is L=1. For the J/ψf0 or J/ψK+K− final state, CPtot is odd.

We have a phase δS for the f0 and non-resonant K+K− contribution, which can

take any value with respect to the dominant decay amplitude. We also make use of the

K+K−/f0 S -wave fraction fswave.

Including an f0 or non-resonant K+K− in the final state state is a major change

to the probability densities detailed in the previous section. These additional S-wave

terms, as we will see, interfere with the dominant decay amplitudes, and break a sym-

metry inherent in the original probability density.

Based on estimates from analogous decays [15], the amount of predicted f0 and

non-resonant K+K− contribution in our data is small, less than 10%. The amount

is expected to be reduced substantially by the selection requirements employed in this

measurement, particularly requirements on theK+K− invariant mass, which is required

to be in the range [1.009, 1.032] GeV/c2. For a small fraction, we can approximate the

combined f0 and non-resonant K+K− contributions as a flat line shape. The phase δS

is expected to vary quite slowly across the φ mass range. We approximate it as flat

across the φ mass range, based on simulation.
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1.3 Analysis of Scalar to Vector-Vector Decays

We perform a mass-integration of the f0/non-resonant K
+K− probability density

over of the φ window. The φ mass line shape is taken as a relativistic Breit-Wigner with

a mass-dependent width. The full mathematical description of the line shape is given

in Appendix B. Due to the complicated shape, a numerical integration is performed. A

slightly simplified description of the probability density, using a non-relativistic Breit-

Wigner and analytic integration is given here, as a more straight-forward illustration

of the effect of additional S -wave contributions on the total probability density [14].

The normalized probability density for B0
s → (B̄0

s ) → J/ψf0/K
+K− decays is

analogous to Eq. 1.43

QB(θ, φ, ψ, t) =
3

16π
|B(t)× n̂|2

QB̄(θ, φ, ψ, t) =
3

16π
|B̄(t)× n̂|2. (1.58)

B and B̄ contain the explicit time dependence of the additional amplitude.

B(t) = (B(t), 0, 0)

B̄(t) = (B̄(t), 0, 0) (1.59)

where

B(t) =
e−Γt/2

√

τH + τL − cos 2βs (τL − τH)

[

E+(t)− e2iβsE−(t)
]

,

B̄(t) =
e−Γt/2

√

τH + τL − cos 2βs (τL − τH)

[

−E+(t) + e−2iβsE−(t)
]

. (1.60)

The amplitude from f0 and non-resonant K+K− contribution is added to the dom-

inant decay amplitude, and their total amplitude squared. The resulting probability

has a mass dependence, due to the fact that two amplitudes interfere in the φ mass

region. Otherwise, we could simply sum the two squared amplitudes. We define a

generic K+K− invariant mass range [µlo, µhi], in which the K+K− invariant mass µ

lies. We now have a total probability density of

ρB(θ, φ, ψ, t, µ) =
9

16π

∣

∣

∣

∣

[

√

1− fswaveg(µ)A(t) + eiδS
√

fswave
h(µ)√

3
B(t)

]

× n̂

∣

∣

∣

∣

2

ρB̄(θ, φ, ψ, t, µ) =
9

16π

∣

∣

∣

∣

[

√

1− fswaveg(µ)Ā(t) + eiδS
√

fswave
h(µ)√

3
B̄(t)

]

× n̂

∣

∣

∣

∣

2

.(1.61)
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where

g(µ) =

√

Γφ/2

∆ω
· 1

µ− µφ + iΓφ/2
(1.62)

and

h(µ) =
1√
∆µ

(1.63)

and

∆µ = µhi − µlo. (1.64)

The quantity µφ is the φ mass (1.019 GeV/c2), and Γφ is the φ width (4.26 MeV/c2).

As in the case of the dominant decay, we rewrite the probability density in a way

that separates the CP -even and odd time evolutions from each other and from the

transversity amplitudes. In the case of the f0 and non-resonant K+K−, the time

evolution of the final state is CP -odd.

QB(θ, ψ, φ, t) =
3

16π
|B(t)× n̂|2

=
3

16π
|B× n̂|2|f−(t)|2 (1.65)

and

QB̄(θ, ψ, φ, t) =
3

16π
|B̄(t)× n̂|2

=
3

16π
|B̄× n̂|2|f̄−(t)|2, (1.66)

where B is the vector (1, 0, 0).

The total probability density is now:

ρB(θ, ψ, φ, t, µ) = (1− fswave)
Γφ/2

∆ω
· 1

(µ− µφ)2 + Γ2
φ/4

· PB(θ, ψ, φ, t)

+ fswave
1

∆µ
QB(θ, ψ, φ, t)

+ 2

√
27

16π
Re
[

F(µ)
(

(A− × n̂) · (B× n̂) · |f−(t)|2
)]

+ 2

√
27

16π
Re
[

F(µ)
(

(A+ × n̂) · (B× n̂) · f+(t) · f∗−(t)
)]

(1.67)
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and

ρB̄(θ, ψ, φ, t, µ) = (1− fswave)
Γφ/2

∆ω
· 1

(µ− µφ)2 +
1

1+fswave
Γ2
φ/4

· PB̄(θ, ψ, φ, t)

+ fswave
1

∆µ
QB̄(θ, ψ, φ, t)

+ 2

√
27

16π
Re
[

F(µ)
(

(A− × n̂) · (B× n̂) · |f̄−(t)|2
)]

+ 2

√
27

16π
Re
[

F(µ)
(

(A+ × n̂) · (B× n̂) · f̄+(t) · f̄∗−(t)
)]

(1.68)

where

F(µ) ≡
√

fswave(1− fswave)Γφ
2∆µ∆ω

· eiδS

µ− µφ − iΓφ/2
. (1.69)

In this thesis, we do not perform a mass dependent analysis. We integrate out the

mass dependence, leaving the final probability densities

ρB(θ, ψ, φ, t) = (1− fswave) · PB(θ, ψ, φ, t) + fswaveQB(θ, ψ, φ, t)

+ 2

√
27

16π
Re
[

Iµ

(

(A− × n̂) · (B× n̂) · |f−(t)|2
)]

+ 2

√
27

16π
Re
[

(A+ × n̂) · (B× n̂) · f+(t) · f∗−(t)
]

(1.70)

and

ρB̄(θ, ψ, φ, t) = (1− fswave) · PB̄(θ, ψ, φ, t) + fswaveQB̄(θ, ψ, φ, t)

+ 2

√
27

16π
Re
[

Iµ

(

(A− × n̂) · (B× n̂) · |f̄−(t)|2
)]

+ 2

√
27

16π
Re
[

(A+ × n̂) · (B× n̂) · f̄+(t) · f̄∗−(t)
]

(1.71)

where

Iµ ≡
∫

F(µ)dµ =

√

fswave(1− fswave)Γφ
2∆µ∆ω

· eiδS · log µhi − µφ − iΓ/2

µlo − µφ − iΓ/2
. (1.72)

Eq. 1.70 and Eq. 1.71 are the final probability densities used in an unbinned maxium

likelihood fit to determine βs.
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1.3.3 Symmetries

The probability density for the case of B0
s → (B̄0

s ) → J/ψφ decays, without consid-

ering f0 and non-resonant K+K− contributions, has an inherent symmetry under the

following transformation:

(βs,∆Γ, δ⊥, δ||) ⇔ (π/2− βs,−∆Γ, π − δ⊥, 2π − δ||). (1.73)

This symmetry produces an ambiguity in the measured value of βs. For any mea-

sured βs, an equally valid solution exists under the above transformation of variables.

Fundamentally, the symmetry and ambiguity are due to the fact that we can only mea-

sure relative, not absolute values for the strong phases, and βs enters the probability

densities as a sine or cosine.

The addition of the f0/non-resonant K
+K− contribution to the final state removes

this symmetry, and the ambiguity in the solution for βs [16]. This occurs via interfer-

ence between the f0/non-resonant K
+K− partial wave and the dominant decay in the

invariant mass region of the φ resonance. According to Wigner’s causality principle, the

strong phase from the dominant decay will increase rapidly across the φ resonance [17].

As we have noted before, the phase of the f0/non-resonant K
+K− contribution, δS , is

nearly flat across the resonance. We expect the phase differences δS − δ0, δS − δ⊥, and

δS − δ|| to decrease across the φ resonance. If the phase difference were constant across

the φ resonance, it would be possible to find a transformation of δS and the strong phase

that left the probability density invariant. However, the value of δS − δ0 is different

at each value of the K+K− invariant mass. It is impossible to find a transformation

of the phases that holds for every point along the φ resonance. The symmetry of the

probability density is therefore broken, and only one βs solution remains.

1.4 B Meson Lifetimes

The observables ∆Γ and Γ are key variables in the time-dependent component of the

measurement of βs. The decay width Γ is simply related to the lifetime τ by τ = 1/Γ.

The lifetime for B mesons is long, on order of 1 ps (∼1.5 ps for the B0
s). This is the case

because the top quark is extremely heavy compared to the bottom, forcing the bottom

to decay inter-generationally. Such decays are suppressed by the factor |Vcb|2 ≈0.04.
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1.4 B Meson Lifetimes

We also refer frequently to the related proper decay length cτ , where c is the speed of

light. For the B0
s meson, cτ is ∼450 µm.

The “lifetime” quantity most directly calculable from information collected by the

CDF detector is the proper decay time t. It is defined by

t =
LMB

p
=
LxyM

B

pT
(1.74)

whereMB is the mass of the B meson, and p and pT are the momentum and transverse

momentum of the B. The transverse decay length Lxy is shown schematically in Fig. 1.9.

L is the distance from the primary event vertex to the decay vertex, and Lxy is the

transverse distance from the decay vertex to the primary vertex, projected onto the B

transverse momentum.

B
lepton-D directionD

xyL lepton
neutrino

P.V.

Figure 1.9: Schematic of a B decay, illustrating the transverse decay length Lxy.

The uncertainty on the proper time, σt, is directly related to the uncertainty on the

transverse decay length in the case of decays for which all decay products are detected

and used to reconstruct the decay:

σt =
σ(Lxy)M

B

pT
. (1.75)

The proper time and lifetime both appear in the probability density function for

the proper time for the B meson, which is exponentially decaying:

P (t) ∼ 1

τ
e−t/τ . (1.76)
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1.5 Current Experimental Status

The measurement of βs has been carried out by both the CDF and DØ collaborations.

Of course, a number of measurement were pre-cursors to the measurement of βs, in-

cluding measurements of the B0
s lifetime [18, 19, 20], the decay width ∆Γ [21], and the

measurement of the B0
s/B̄

0
s oscillation frequency ∆ms [22]. Also, both collaborations

have performed measurements of the βs without the use of flavor-tagging [23, 24].

The CDF collaboration has performed one flavor-tagged measurement of βs using

1.35 fb−1 of data [25, 26, 27], and updated the measurement to a 2.8 fb−1 dataset

in the summer of 2008 [28, 29]. The more recent result was compromised by the use

of non-optimal flavor-tagging. DØ produced a flavor-tagged measurement of βs, also

on 2.8 fb−1. A combined CDF/DØ result has been produced from the two 2.8 fb−1

results [30]. Neither CDF nor DØ includes the effect of decays to J/ψf0 or J/ψK+K−.

Both CDF and DØ measure a positive deviation of βs from the standard model

prediction of βSMs =0.02. The deviations are not statistically significant: 1.7σ for the

CDF-only measurement, and 2.3σ for the combined CDF/DØ result. Even so, the

measurement has been a source of great excitement in the community as a realm for

detecting possible non-standard model physics.

1.6 Analysis Strategy

This analysis relies on an angular analysis to separate the CP -odd and CP -even com-

ponents of the J/ψφ final state. The decay B0
s → J/ψφ is a pseudoscalar decay to two

vector particles and, as such, includes L = 0, L = 1, and L = 2 components in the

final state. The spin components of the final state can be related to the CP of the

final state: L = 0 and L = 2 are CP even, while L = 1 is CP odd. We define the

angular momentum distribution of the final state in terms of linear polarization of the

vector particles using the transversity basis [31]. This allows us to describe the decay

angular dependence in terms of transversity amplitudes A0, A||, and A⊥. By definition,

|A0|2+ |A|||2+ |A⊥|2 = 1. We also define the strong phases δ0 = 0, δ|| = arg(A||(0)) and

δ⊥ = arg(A⊥(0)), which carry information about the initial relative polarizations of

the vector particles. The strong phases and the transversity amplitudes are extracted

by fitting for the transversity angles cos(θ), φ, and cos(ψ).

28



1.6 Analysis Strategy

We consider, for the first time, potential contamination fromB0
s → J/ψf0 andB

0
s →

J/ψK+K−. The f0 and K+K− are S -wave partial waves whose angular momenta

combine with that of the J/ψ to form a CP-odd final state. We perform a mass-

integrated fit about the φ resonance to measure the fraction and phase of the f0 and

K+K− S -wave.

Sensitivity to βs can be improved by separately tracking the time evolution of the

B0
s and B̄0

s mesons. A B0
s meson will mix to B̄0

s many (∼20) times before decaying

to J/ψ and φ. Thus, to distinguish the time evolution of B0
s mesons the from time

evolution of B̄0
s mesons, we must employ flavor-tagging to determine the production

flavor of the reconstructed meson. The flavor-tagging algorithms used in this analysis

will be described in dedicated sections.

The angular analysis and flavor-tagged, time-dependent analysis are combined in

an unbinned maximum likelihood fit. The fit is used to extract βs, the decay width

difference ∆Γ between the B0
s and B̄0

s mass eigenstates, the average B0
s lifetime, the

transversity amplitudes, the strong phases, and the K+K−/f0 S -wave fraction and

phase δS . The mass difference, ∆ms = mH−mL features prominently in the likelihood.

With the statistics of our current dataset, there is no sensitivity to ∆ms. The PDG

average, ∆ms=17.77±0.12 ps−1 is taken as an input. We describe the derivation of

the likelihood in detail in a dedicated section. A frequentist interpretations of the

likelihood is presented. We quote a confidence region in the βs−∆Γ plane, in addition

to a confidence interval on βs, and point estimates for other parameters of interest in

case of zero CP violation.
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Chapter 2

Experimental Apparatus

2.1 Tevatron

The Tevatron was the world’s highest energy accelerator until Fall 2009 when the

Large Hadron Collider (LHC) turned on. The Tevatron is a proton-antiproton collider,

located at Fermi National Accelerator Laboratory (Fermilab). The Tevatron, wherein

the proton and antiproton beams rotate and collide, is 1 km in radius and is situated

underground. Collisions between protons and antiprotons occur at a center of mass

energy of 1.96 TeV. The proton and antiproton beams each contain 36 bunches, with

each proton bunch containing typically 200 billion protons, and each antiproton bunch

containing about 20 billion antiprotons, for 2009 operation. Bunch crossings occur every

396 ns. The beam trajectories in the Tevatron are guided such that collisions occur at

two points along the main ring, corresponding to the location of two detectors, the CDF

and DØ experiments. The data used in this thesis was collected by the CDF detector,

also referred to as the CDF II detector to specify that is an upgraded version of the

original CDF detector. We will describe the components of the CDF detector relevant

to this analysis in the following sections, as well as the features of the accelerator

complex that produces and accelerates the protons and antiprotons.

The Tevatron accelerator complex consists of proton and antiproton sources, and a

series of accelerators used to raise the produced particles to from the 150 GeV injection

energy to the energy necessary for 1.96 TeV center of matter collisions. A schematic of

the accelerator complex is given in Fig. 2.1. Detailed information about the Tevatron

is given in Ref. [32, 33]. We explain the chain of accelerators next.
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Figure 2.1: Schematic of the Tevatron accelerator complex.

2.1.1 Proton Production

Proton production begins with a Cockcroft-Walton electostatic pre-accelerator. Hy-

drogen gas is ionized to produce negatively charged H−1 ions with a kinetic energy of

750 keV. The ions move along a transport line and through an electostatic chopper. The

chopper selects a small portion of the beam and allows it to continue into the Linac, a

150 m long linear accelerator. The Linac’s drift tubes accelerate the beam to 400 MeV.

Its series of radio-frequency (RF) stations separate the proton beam into longitudinal

bunches. Then, both electrons are stripped from the H−1 ions with a carbon foil.

The resulting protons are injected into a 75 m radius circular synchrotron called

the Booster. The Booster further accelerates the protons, and increases the intensity

of the beam by injecting more protons into existing bunches. Its RF cavities do not

have the same frequency as those in the Linac, and the proton bunches must come into

phase with the new frequency. The proton beam exits the Booster with an energy of 8

GeV, separated into 84 bunches.

Protons are then transferred to another circular synchrotron, the Main Injector. The

Main Injector has a much larger radius than the Booster (0.5 km radius). The beam

energy is increased from 8 GeV to 150 GeV. The bunch structure is also collapsed from

84 to 36 bunches. The beam is then injected into the Tevatron, where it is accelerated
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to the final energy of 980 GeV.

2.1.2 Antiproton Production

Antiprotons are produced by taking 150 GeV protons from the Main Injector and

colliding them against a nickel target. Before colliding with the target, though, the

proton beam is taken through the so-called “flattop” stage, during which the bunches

are rotated 90◦ in longitudinal phase space. This process is performed so that the

protons all collide with the target at approximately the same time. After flattop, the

beam is focused by a quadrupole magnet, and collided against the nickel target. A

shower of particles including a few protons and antiprotons is produced by the protons’

interaction with the nickel nuclei. The antiprotons are focused with a lithium lens, and

sent through a dipole magnet that selects antiprotons with an energy of around 8 GeV.

The process is highly inefficient, with 20 antiprotons produced per million incident

protons.

The surviving antiproton beam is transferred to the Debuncher, a triangular syn-

chrotron. The beam must be consolidated both longitudinally and transversely to be

prepared for efficient transfer through the next steps. This is accomplished through two

types of cooling: stochastic cooling (transverse) and momentum (longitudinal) cooling,

which employ electrodes and magnets to reduce the size and momentum spread of the

bunches.

After cooling in the Debuncher, the beam is injected into another triangular syn-

chrotron, the Accumulator. The antiproton beam undergoes further stochastic cooling,

and is stored until an adequate number of antiprotons beam have been accumulated.

This process is called “stacking”, and can take around one day. The stacking rate and

hence limited antiproton supply is a determines the Tevatron’s maximum possible rate

of pp̄ collisions.

After the antiproton stack in the accumulator is deemed large enough for collisions

(about 20 billion antiprotons per bunch), the antiproton beam is transferred to the

Main Injector and accelerated to 150 GeV. At this point, the antiproton beam has the

same bunch structure as the proton beam.

The Main Injector has an additional beam pipe built in its tunnel, the Recycler

Ring. The recycler ring is used to store antiprotons during stacking.
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2.1.3 Injection and Collision

After acceleration in the Main Injector, the antiproton beam is injected into the Teva-

tron in 36 bunches, and accelerated to 980 GeV. The protons are already present,

circling the ring in the opposite direction to the anti-protons. Both protons and an-

tiprotons circulate in 3 groups (trains) of 12 bunches. The gap between trains is large

enough at 2.6µs that antiprotons can be injected into the Tevatron while protons are

circulating, without affecting the proton orbit.

The same beam pipe and magnet system can be used for both beams, because the

p’s and p̄’s are oppositely changed. The beam trajectories are helical, and controlled

such that the proton and antiproton beams are separated everywhere but at the collision

points at CDF and DØ. The basic circular trajectory of the beams is produced with

a uniform magnetic field. The separation between the proton and antiproton beams

and helical trajectory is accomplished with electrostatic separators. The beams are

focused by a series of quadrupole magnets to ensure an intense beam at the collision

points, maximizing the chance of proton-antiproton collisions. The beam spot at the

interaction point is roughly circular and has a diameter of 30 µm.

The rate of proton-antiproton collisions is proportional to the instantaneous lumi-

nosity, which for a head-on pp̄ collision is given as:

L =
fBNpNp̄

2π(σ2p + σp̄2)
F (σl/β

∗) (2.1)

where f is the bunch revolution frequency, B is the number of bunches per beam, Np

or Np̄ are the number of protons or antiprotons per bunch, σ2p (σ2p̄) is the rms of the

p (p̄) beam size at the interaction point, and F is a form factor that accounts for the

effect of the bunch shape. F is dependent on the bunch length σl and the beta function

β∗, which measures the beam width.

The instantaneous luminosity turns into the integrated luminosity by L =
∫

Ldt,

where t is the length of time for which the Tevatron delivers collisions. L is the more

important quantity for a physics analysis, as it determines the number of occurrences N

of a particular physics process when combined with the cross section σ for the process:

N = L× σ. (2.2)
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The cross section σ for a particular physics process is dependent on the available

center of mass energy
√
s, among other quantities. Thus, when building or upgrading

an accelerator, the goal is to maximize the design
√
s and L. Once an accelerator is built

and in operation, the goal is to run the accelerator for as long as possible, maximizing

the integrated luminosity. The Tevatron has performed remarkably well over the past

few years. The initial instantaneous luminosity versus time is shown in Fig. 2.2, and

integrated luminosity versus store number delivered by the Tevatron and recorded by

CDF is displayed in Fig. 2.3.

Figure 2.2: Tevatron instantaneous luminosity versus time.

2.2 CDF Detector

The data used in this analysis were collected by the CDF detector between Febru-

ary 2004 and June 2009. The CDF Detector is a multi-purpose detector that collects

information relevant to a diverse array of physics analyses about the products of pp̄ col-

lisions. It is a cylindrical detector consisting of concentric layers of detector subsystems

for measuring various properties of collision products. A schematic view of the CDF

detector showing the different detector subsystems is given in Fig. 2.4 (cut-away view)

and Fig. 2.5 (elevation view).
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Figure 2.3: Tevatron delivered luminosity, and CDF acquired luminosity.

Figure 2.4: Cut-away view of the CDF detector.
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2.2 CDF Detector

Figure 2.5: Elevation view of the CDF detector.

The CDF technical design report [34] contains a full and detailed description of the

CDF detector. In the next sections, we will briefly describe the lay-out and function of

the detector, and give a more detailed description of the subsystems necessary to this

analysis.

A collision at the interaction point produces a spray of different particles, stable

and unstable. The stable particles are electrons, protons, and neutron. They transverse

all layers of the detector without decaying, but unstable particles, depending on their

type, may decay in different parts of the detector, though most will decay within the

beampipe. Each type of particle has characteristic behavior in the detector.

Two tracking systems are located in the innermost layer of the detector, closest

to the pp̄ interaction point. They record the trajectory of charged particles passing

through them, referred to as tracks. The tracking system closest to the beam pipe is

a silicon microstrip detector. It is surrounded by a wire drift chamber, which is in

term surrounded by a solenoid coil with a 1.4 T magnetic field. Outside the solenoid

is the time of flight (TOF) system, used for identifying the particle type of a track.

The tracking systems facilitate the reconstruction of particle trajectories, based on

the particle’s interactions with the silicon strips and the gas of the drift chamber.

Additionally, they are used for vertexing: tracing multiple tracks back to a common

origin, either to the primary vertex at the interaction point (characteristic of unstable
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particles that decay immediately to more stable daughter particles), or to a displaced or

secondary vertex (characteristic of unstable particles that travel some distance before

decaying).

Outside the tracking systems and the solenoid are the electromagnetic and hadronic

calorimeters. Photons and electrons deposit energy in the electromagnetic calorimeters,

pions, protons and neutrons deposit energy in the hadronic calorimeter. At the outer

radius of the detector is the muon system, a combination of drift chambers, scintillators,

and steel shielding. Muons are minimum ionizing particles and do not interact readily

with the inner detector components. The behavior of different particles as they pass

through the detector is illustrated in Fig. 2.6.

Figure 2.6: Schematic of how different particles pass through the subsystems of the CDF

detector.

CDF uses coordinate systems with the following conventions. The origin is at CDF’s

center, roughly the interaction point:

• +x: away from the center of the Tevatron main ring

• +y: up

• +z: proton direction along the beamline

• r =
√

x2 + y2 + z2

• φ = tan−1(y/x)
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2.2 CDF Detector

• θ = cos−1(z/r)

The coordinate r (ρ = x2+y2 in cylindrical coordinates) describes the radial distance

from the origin. The angle θ is the polar angle from the +z axis and φ is the azimuthal

angle from the +x axis. Note that the (ρ, φ) plane is the same as the (x, y) plane.

We denote the direction parallel to the +z axis as the longitudinal direction, and

the direction perpendicular to the +z axis as the transverse direction. For example,

transverse energy and momentum are often relevant quantities for an analysis: ET =

E sin θ and pT = p sin θ. Another useful quantity is the pseudorapidity

η = − log tan

(

θ

2

)

, (2.3)

which is the ultra-relativistic limit of the rapidity

y =
1

2
log

E + pz
E − pz

. (2.4)

A particle direction is usually described in terms of η and φ, which is convenient

because η is invariant under Lorentz boost in the z direction. The pseudorapidity η is

also used to describe the detector coverage, because distributions of particles tend to

be flat in η. We refer to high η regions of the detectors as the forward region (η >∼1),

and low η regions as the central region (η <∼1).

2.2.1 Tracking

The tracking subsystems, consisting of the silicon vertex detectors and the central

outer tracker (COT), are critical to this particular analysis. These detectors record the

ionization energy produced by charged particles interacting with the detector material.

The clusters of ionization energy are called hits, and a series of hits in concentric layers

of the detector can be reconstructed to form a track. The tracking detectors are situated

in a uniform magnetic field, thus the radius of curvature of the charged particle track

can be used to determine the particle’s momentum. A cut-away view of the CDF

tracking system is show in Fig. 2.7.

Silicon Vertex Detector
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Figure 2.7: Schematic of a quandrant of the CDF detector, showing the layout of tracking

subsystems.

The silicon vertex detector [35, 36] is made up of layers of silicon strip sensors. The

sensors act as a p-n junction, and ionization from a charged particle will leave a cluster

of electron-hole pairs. The sensors can be single sided, segmented into strips that lie

along the z direction (axial). In this case, only r − φ information about the charged

particle track is available. Or, the sensors can be double sided, with the segments on the

back side tilted at an angle relative to the z direction (stereo). The tilt allows double

sided sensors to provide z information in addition to the r−φ information provided by

the strips on the front side. A charged particle will usually produce electron-hole pairs

in a number of strips. During reconstruction, the magnitude of the charge deposition

in adjacent strips is examined to determine precisely the location through which the

charged particle passed.

The CDF silicon detector has three subcomponents: L00, SVX, and ISL. An end-

view of the silicon system is shown in Fig. 2.8.

The L00 detector is a single layer of one-sided strips, set directly against the beam

pipe, ∼1.7 cm from the beam axis. The main part of the silicon detector, the SVXII,

has five concentric cylinders of silicon sensors, located between 2.5 cm and 10.6 cm from
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Figure 2.8: Cross sectional view of CDF silicon vertex detector.

the beam axis. Each layer of the cylinder is made of 12 ladders of sensors (one ladder

contains 4 sensors), forming a ring in φ. The sensors are double sided, and stereo layers

make an angle of either 1.2◦ or 90◦ relative to the z direction. All the cylinders are

three ladders long in the z direction. The three barrels are stacked end to end, bringing

the total length of the SVX to 87 cm. The Intermediate Silicon Layers (ISL) are three

doubled sided layers, located between the SVX and the COT, at ρ=20, 22, and 28 cm.

They provide coverage in both the central region and the critical forward region.

Central Outer Tracker

The Central Outer Tracker (COT) [37] is a multi-wire, open-cell drift chamber, with

coverage for tracks with |η| less than 1. The volume of the COT is segmented into 8

concentric superlayers, made up of open cells in φ, as shown in Fig. 2.9.

The lay-out of the open cells is shown in Fig. 2.10. Each cell has 12 gold-tungsten

sense wires and 17 potential wires that shape the electric field. The cells are separated

from each other with grounded, gold-Mylar plates. Wires are aligned to be either axial

or stereo (with stereo angles of ±3◦), in order to provide r, φ and z information.

The volume of the COT is filled with an 50/50 argon-ethane mixture, which is

ionized as a charged particle passes through. The resulting shower of electrons drifts to

the sense wires, where the magnitude of deposited charge is recorded. The maximum
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Figure 2.9: Partial cross section of the CDF Central Outer Tracker.
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Figure 2.10: Cell layout for superlayer 2.
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drift time is 100 ns, which is small compared to the bunch crossing rate.

As stated earlier, the tracking systems are situated inside a uniform magnetic field,

thus the trajectory of a charged particle will be helical. Track reconstruction involves

several layers of pattern recognition to construct a full helical track from disjoint hits in

the silicon detector and COT. In the first step, only COT hits are used. Line segments

are reconstructed from hits within a single superlayer. Then, a pattern recognition

algorithm searches for line segments that are tangent to the same circle (the circle

being the helical trajectory’s projection in the r, θ plane). This association of line

segments is done using on hits in the axial superlayers. In order to construct the 3D

helical path, adding the z dimension, stereo information about the line segments is

added, and a helical fit is performed.

The helix is described by five parameters [38]: C, θ, φ0, d0 and z0. The latter three

are associated with the point of closest approach of the helix to the z axis: z0 and

φ0 are simply the z and φ coordinates of that point, and d0, the impact parameter,

is the transverse distance to the CDF origin. The former two parameters are C, the

curvature of the helix, and θ, the direction of the momentum vector at the point of

closest of approach to the z axis, projected into the r − z plane.

After the COT information has been used to reconstruct the helical trajectory of

the charged particle in the COT, silicon hit information is added. Hits in the outermost

silicon layer consistent with the helical track in the COT are added. If no consistent

hits are found, the search is performed in the next layer. When a consistent hit is

found, the track is refit to include the new hit, decreasing the errors on the five track

parameters described above. The process is repeated until all of the silicon layers have

been searched for hits consistent with the increasingly well-defined track.

The momentum resolution of the CDF detector is excellent. If both the silicon

detectors and COT are used, the resolution can be as precise as σpT /pT 0.07%/GeV/c,

where σpT is the error on the pT measurement.

2.2.2 Time of flight

The time of flight (TOF) system [39] tracks particle flight time from the interaction

point to through the tracking system. The system is located between the COT and

the solenoid, and is a cylindrical layer of scintillators with coverage |η| <1. The arrival
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time of particles is measured by a light pulse in the scintillator, and combined with

knowledge of the collision time, the time of of flight can be determined.

2.2.3 Calorimeters

After passing through the COT, a charged particle will enter the electromagnetic

calorimeter, and possibly the hadronic calorimeter, depending on the particle’s type.

The purpose of the calorimeters is to capture and measure all of the passing particle’s

energy. The calorimeters are composed of alternating layers of absorber and scintillator

material. If the particle is an electron or photon, it will lose most of its energy in the

electromagnetic calorimeter through bremsstrahlung. The characteristic behavior of an

electron or a photon radiating in the electromagnetic calorimeter is the production of

a cascade of photons starting immediately upon entering the calorimeter.

Other charged particles are too massive to emit bremsstrahlung radiation, and will

pass to the hadronic calorimeters before losing their energy. They will interact with

the nuclei of the absorbing materials via the strong interaction and produce a shower of

daughter particles. This behavior results in a different shower shape than showers in the

electromagnetic calorimeter, as the chances of immediately interacting with a nucleus

upon entering the hadronic calorimeter is small. Hadronic showers will begin after

the particle has traveled some distance through the calorimeter material. Minimum

ionizing particles, such as muons, will not lose much energy in the electromagnetic or

hadronic calorimeters, and will pass to the muon chambers, which will be discussed in

Section 2.2.4.

The electromagnetic and hadronic calorimeters [40] are made up of several sections,

the plug hadronic and electromagnetic calorimeters (PHA and PEM), central hadronic

and electromagnetic calorimeters (CHA and CEM) and wall hadronic calorimeter (WHA).

The different sections afford broad coverage, 0 < |η| < 3.6, as shown in Fig. 2.11. The

PHA and PEM cover the forward regions, and CHA and CEM the central region, and

WHA the intermediate region between the plug and central calorimeters.

The absorbing materials differ for the different calorimeter types: iron for the elec-

tromagnetic calorimeters, iron for the PHA, and steel for the CHA and WHA. Plastic

scintillators are used in all calorimeters. The electromagnetic calorimeters are ∼19-23

radiation lengths thick, and the hadronic calorimeters are ∼4.5-7 interaction lengths
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η=3.0
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Figure 2.11: Side view of CDF calorimeter system.
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thick, depending on whether the particle passes through the central or the plug region.

Signals are read out by photomultiplier tubes that pick up light from the scintillators.

The calorimeters are segmented into towers in φ, with segments of 15◦ for the

central region and the four towers in the most forward region (|η| > 2.1), and segments

of 7.5◦ for the other towers in the forward region. As shown in Fig. 2.11, the towers

are projective and point towards the interaction point.

Additional information is provided by the shower maximum detector [41]. The

“shower max” detector is composed of scintillators and wires, and is located inside

the CEM in the area where bremsstrahlung showers reach their maximum intensity.

It provides information about the coordinates of the shower that can be useful in

separating the signals of photons, electrons, and pions. The shower position information

can be matched to tracks in the COT and silicon trackers.

2.2.4 Muon chambers

The muon chambers [42] are located outside of the calorimeters, far from the interaction

point. Muons are too heavy to emit significant bremsstrahlung radiation in the electron

magnetic calorimeters, and do not interact with nuclei in the hadronic calorimeters, and

will thus pass through to the muon chambers. Layers of steel shielding are placed in

front of the muon chambers in order to exclude absorb other particles and absorb

part of the muons’ energy. In general, only muons will reach the muon chambers,

and all other particles (excluding neutrinos) will deposit all their energy in either the

electromagnetic or hadronic calorimeter. Occasionally, though, an energetic hadronic

particle will decay towards the back of the hadronic calorimeter, and its decay products

will “punch through” to the muon chambers. These particles are called “fakes” or

“punch throughs”.

The muon system has several subsystems, the central muon detector (CMU), the

central muon upgrade detector (CMP), the central muon extension detector (CMX),

and the intermediate muon upgrade (IMU). In this analysis, the IMU is not used. The

coverage of the muon systems in ηφ space is shown in Fig. 2.12. The muon subsystems

are composed of a combination of drift chambers, scintillators, and shielding.

CMU

The CMU detector is located outside of the CHA, with a layer of steel shielding

between the two to help decrease punch through. The CMU provides coverage for
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Figure 2.12: ηφ coverage of the CDF muon systems.

|η| <0.6. It is made up of 2880 axially positioned single wire proportional chambers.

It is segmented into 15◦ wedges, but gaps between the wedges decrease the total φ

acceptance to 84% The wedges are segmented into three smaller wedges containing an

array of drift cells which are 4 cells wide and 4 cells deep. A muon must have pT >1.4

GeV/c to reach the CMU.

CMP

The CMP is located beyond the CMU, and is separated from in by 60 cm of steel.

It has the same |η| coverage as the CMU, but it is built around the return yoke of the

solenoid, which intrudes on the φ coverage in places. It is composed of 1076 axially

positioned single wire proportional chambers. A muon must have pT >2.2 GeV to

reach the CMP. Muons that leave a signal in both the CMU and CMP are called

CMUP muons. Such a sample has a very low fake rate, due to the extra shielding of

the systems.

CMX

The CMX offers coverage in the more central region, 0.6< |η| <1.0. It is composed
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2.2 CDF Detector

of 2208 drift tubes, arranged into conical sections at either end of the detector. The

sections of the CMX are 8 layers deep, and are tilted slightly with respect to the

beamline. A muon must have pT >1.4 GeV to reach the CMX.

Scintillating tiles are present on the outside surfaces of the CMP and CMX. They

are used to compensate for the slow drift time of the muon drift tubes, which is greater

than the bunch crossing rate. A signal in the scintillators allows the muon to be matched

to the bunch crossing which produced it.

Muons are reconstructed by first searching for a line segment produced by hits in

several layers of the drift chamber. This line segment is called a stub, and must contain

hits from at least three layers. The stub is then matched to a track in the COT. A

minimum momentum is required on the track, depending on the type of muon stub to

which it is matched. Restrictions are placed on the matching in the rφ plane between

the muon stub and the COT track to ensure that the matching between stub and COT

track is correct. An upper limit is set on the difference between the extrapolated track

location and the stub location, again based on the type of muon stub.

2.2.5 Particle identification

The ability to distinguish final state decay products from each other is important for any

analysis with a fully reconstructed, hadronic final state. In this analysis, it is critical

to distinguish kaons from charged pions. This goal is aided by the use of particle

identification, using the specific ionization of particle species in the COT (dE/dx ) and

the mass-dependent time of flight of particles through the COT (TOF).

A charged particle traveling through the COT deposits energy via ionization. The

amount of ionization energy deposited is dependent on the particle velocity, in accor-

dance with the Bethe-Bloch equation. Therefore, dE/dx information can be used to

determine a particle’s velocity and, when combined with a measurement of the particle’s

momentum, to determine the particle’s mass.

Low momentum tracks are identified using information from the time of flight sys-

tem. When time of flight is combined with momentum measurement, and the length

of the track L, the particle’s mass can be calculated using

m =
p

c

√

c2t2

L2
− 1. (2.5)
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The two methods of particle identification are complementary, in that the separation

power between charged pions and kaons is greatest for for particle momentum less than

1.6 GeV/c, while dE/dx continues to provide good separation above 1.6 GeV/c. Using

both TOF and dE/dx information provides particle separation of 1-2σ across the range

of possible particle momenta. It should be noted that the current calibration of dE/dx

does not use tracks with a transverse momentum under 2.0 GeV/c, somewhat limiting

the particle identification power.

2.2.6 Trigger

Collisions in the CDF detector occur at a rate of 2.5 million interactions per second, far

too high a rate for every event to be recorded, not to mention the unreasonable amount

of storage space required for recording every event. Thus, it is critical to make real-

time decisions during data-taking of which events to store and which to discard. This

multi-tiered selection process is called triggering. It is of paramount importance that

the trigger does not simply discard events randomly, but retains events that contain

interesting physics.

The trigger must reduce the rate from 2.5 MHz (rate of collisions) to ∼100 Hz

(rate at which CDF is capable of writing out data). This reduction is achieved through

several levels of triggering, including hardware and software triggers which utilize in-

creasingly detailed information about different parts of the detector. There are three

levels of triggering. An event must satisfy requirements at Level 1, 2 and 3 to be kept

permanently. The particular set of selection criteria is called a trigger path. There

are ∼140 different trigger paths at CDF, designed to select different types of physics

events.

Level 1

Level 1 is a hardware trigger that takes ∼6 µs to accept or reject an event, equivalent

to a 25 kHz readout rate. It uses information from the COT, calorimeters and muon

chambers. It only uses specific information from these sub-systems: total energy in the

calorimeter, hits in the axial superlayers of the COT, and muon stubs in the CMU,

CMP and CMX. This information is used to reconstruct trigger primitives: muon and

electron objects, and tracks.

Primitives are reconstructed using the Extremely Fast Tracker (XFT) [43]. The

XFT classifies hits as prompt or delayed, depending on whether they have a short or
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long drift time. After classifying hits, the XFT reconstructs track segments, and links

them together to make tracks in the COT. The XFT tracks can then be matched to

muon stubs and calorimeter towers by the Extrapolator unit (XRTP) to make muon,

photon, electron and jet objects.

Level 2

The Level 2 trigger processes events selected by the Level 1 trigger. It has two

levels, one hardware, one software, and a 400 Hz readout rate. It uses more detector

information than the Level 1 trigger, including shower max information and axial silicon

hits, as well as more precise information from the detector subsystems used at Level 1.

A schematic of the detector subsystems used by Level 1 and 2 is given in Fig. 2.13.

A component of the Level 2 trigger is the Silicon Vertex Trigger (SVT) [44] which

extrapolates XFT tracks into the silicon detector. By utilizing silicon hits and the

location of the interaction point, the SVT is able to measure the track impact parameter

d0. Mesons containing b quarks fly ∼1 mm in the laboratory frame before decaying,

therefore have large impact parameters. The ability of the SVT to measure and trigger

on events with large impact parameters is critical to selecting a sample rich in heavy

flavor decays. The SVT’s impressive d0 resolution, 47 µm for tracks with pT >2 GeV/c,

aids in this goal.

Level 3

Level 3 is a software trigger, running on CPU farm. It has a ∼100 Hz readout

rate. Decisions at Level 3 take on order of one second. Level 3 uses fully reconstructed

events. Three dimensional tracks and vertices are reconstructed. A candidate’s Lxy

and invariant mass can be calculated and triggered on.
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RUN II TRIGGER SYSTEM
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Figure 2.13: Detector components used by the CDF trigger system.
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Chapter 3

Data Selection and

Reconstruction

The data sample used for this study was collected with the CDF detector between

February 2002 and June 2009, corresponding to an integrated luminosity of 5.2 fb−1.

The luminosity corresponds not to the raw CDF recorded luminosity during this time

period, but to the luminosity after applying a “good run list”, which discards all data

taking periods during which a detector subsystem was malfunctioning or off.

This measurement uses data collected with the di-muon trigger. The two-track

and lepton plus displaced track triggers were used for studies that are utilized by our

measurement. All three triggers will be described in the following sections.

Two decays mode are reconstructed,

• B0
s → J/ψ(→ µ+µ−)φ(→ K+K−), used to extract the phase βs.

• B+ → J/ψ(→ µ+µ−)K+, used to calibrate the opposite-side flavor tagger, as

detailed in a later section.

Charge conjugates are assumed whenever B0
s or B

+ are referred to, unless otherwise

stated. The decay modes are fully reconstructed, meaning that all final state muon and

kaon tracks have been measured to reconstruct the B meson. This is in contrast to

partially reconstructed decays, such as semi-leptonic decays, where not all of the final

state particles are measured, for instance, if a neutrino is present in the final state.
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3.1 Trigger Requirements

The cross section for b hadron production at CDF is small compared to the inelastic

pp̄ cross section: ∼18 µb compared with 60 mb. The cross section for b hadron →
J/ψ modes is even smaller, ∼0.3 µb. CDF’s di-muon, semileptonic, and two-track

trigger [45] are designed to use the distinctive properties of b decays to distinguish

them from a seemingly overwhelming background.

The di-muon trigger [46] is used to collect the data sample for this thesis. The two

muons in the final state provide an excellent trigger handle. The requirements of the

di-muon trigger are as follows:

• Level 1

- Two oppositely charged XFT tracks,

- Two muon stubs matched to XFT tracks, either CMU-CMU or CMU-CMX,

- Muon has pT >1.5 GeV/c (CMU) or pT >2.2 GeV/c (CMX),

- Opening angle in COT superlayer 6 smaller than 135◦

• Level 3

- 2.7 < Mµµ < 4 GeV/c2

The di-muon trigger data is an ideal sample to measure βs, because the trigger

does make any requirement on the impact parameter of the XFT tracks. An impact

parameter cut would distort the B0
s proper decay time distribution and complicate the

time-dependent portion of the measurement.

The two-track trigger sample was used for the measurement of B0
s B̄

0
s oscillations.

This measurement is a prerequisite to the measurement of βs for two reasons. First,

the oscillation frequency ∆ms is used in our likelihood, but the statistics in the B0
s →

J/ψφ mode are not sufficient to determine ∆ms from our data sample. Secondly, the

measurement of B0
s B̄

0
s oscillations is used to calibrate the same-side kaon tagger. This

will be discussed in detail in Sec. 4.3.2. The two-track trigger requires two displaced

tracks (d0 > 100 µm) and a displaced vertex.

The lepton plus displaced-track trigger sample was used for the development of the

same and opposite side flavor tagging algorithms, and the calibration of the opposite
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side flavor tagger. The lepton plus displaced-track trigger requires one displaced track

(d0 > 120 µm) and one lepton with pT > 4 GeV/c.

3.2 Event Reconstruction

After data has been selected by triggers and written out, it is subjected to an offline

production process. This includes refitting tracks, fitting vertices, reconstructing decay

chains, and packaging the information necessary to allow for physics measurements in

a user-friendly format.

3.2.1 Track Refitting

Tracks are refit offline with the most accurate available detector information and cal-

ibration. Energy loss corrections are applied depending on a track’s particle type. If

L00 hit information is available, it is added to the track refitting. Requirements on

matching between muon stubs and COT tracks are made more stringent. Trigger con-

firmation is required for muons: the muons coming from the B decay of interest must

pass the di-muon trigger requirement. In other words, the event must have been se-

lected by the di-muon trigger based on the final state muons from a B decay, not from

random muons in the event that happened to meet the trigger requirements.

3.2.2 Vertex Fitting

Vertex fitting is central to reconstructing a decay chain. Tracks observed in the detector

are matched together as coming from a common origin, where the parent particle

decayed. The parent particle may itself be a decay product of a heavier particle. The

decay chain is traced backwards from the stable tracks as a series of intermediate

decay vertices, leading to the primary vertex at the interaction point. Momenta can

be assigned to the decay particles, based on the measured momenta of the final state

tracks.

The decays used in this thesis were reconstructed using the ctvmft vertex fitting

program [47]. Vertices can be fit either in 3D or in 2D, providing the user with a handle

on the goodness of fit for the vertices in the form of a χ2 probability.

Knowledge of the primary vertex is critical to the measurement of the B meson

lifetime. Multiple methods of determining the primary vertex exist. For this analysis,
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the primary vertex location is recalculated for each event, using tracks in the event that

were not related to the B meson decay of interest. This is referred to as the “event-by-

event primary vertex method”, and it provides an accurate assessment of the primary

vertex position, with a resolution of ∼20 µm.

3.2.3 BStNtuple

The data used in this thesis was stored in the bstntuple framework [48]. The frame-

work is based on the standard stntuple framework [49]. It stores information about

stable and decaying particle objects, together with information for flavor tagging and

particle identification. It allows the user the flexibility to access different decay modes

without requiring excessive CPU or storage space.

3.2.4 Preselection

In the next section, the process of separating signal from background using an artificial

neural network is described. Before training the network, preselection requirements are

applied to remove events from the data sample that almost certainly do not contain

a B0
s decay. An important aspect of these preselection requirements are cuts on track

quality. The number of fake or mis-measured tracks can be reduced by requiring a

minimum number of hits in the COT and silicon layers.

The preselection requirements for the B0
s → J/ψφ mode are as follows:

• Track quality

- ≥10 axial COT hits for each track

- ≥10 stereo COT hits for each track

- ≥3 axial silicon hits for each track

- pT > 400 MeV/c for each kaon track

• Vertex quality

- χ2
rφ <50, where χ

2
rφ is the χ2 of the 2D rφ vertex fit

• Decay particle kinematic cuts

- 5.1 < MJ/ψφ < 5.6 GeV/c2
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- pT ≥ 4.0 GeV/c for B0
s candidate

- 1.009 < MKK < 1.028 GeV/c2

- pT ≥ 1 GeV/c for φ candidate

- 3.04 < Mµµ < 3.14 GeV/c2

3.3 MC Sample

Numerical simulation of B0
s → J/ψφ and other relevant B decays is employed at several

points in this thesis, when an analytic or data-based approach is not feasible. Realistic

Monte Carlo events are used for modeling detector angular analysis and for training an

artificial neural network to distinguish signal from background.

A series of programs are used to trace all the steps of a B0
s → J/ψφ decay, beginning

with b quark generation in a pp̄ collision, fragmentation of the b quark to form a

hadron, and the decay of the hadron in the CDF detector. We simulate the generation

and fragmentation of b quarks using the bgenerator program [50]. bgenerator

is based on next-to-leading-order QCD calculations and the Peterson fragmentation

function [51]. The bgenerator package massively simplifies the collision environment,

generating one b quark which fragments only to the specified B hadron. We use a phase-

space model for the B0
s decay. The phase-space model ensures that all transversity

angles are generated flat for B0
s decays. We examine how the initially flat distributions

are sculpted by detector acceptance to determine the detector efficiency, as described

Sec. 4.2.1.

The hadron’s decay is simulated with the evtgen package [52]. The interaction of

the particles in the decay chain with the CDF detector is simulated with the geant [53]

based cdfsim package [54]. Monte Carlo events simulating detector and data-taking

conditions through about 1 fb−1 of data was used in this thesis. Monte Carlo events

were not used for studies where a strong time dependence was expected, thus it was

not necessary to simulate the conditions of the entire dataset. After passing through

the detector, simulated events are then subjected to the same trigger requirements and

reconstruction process as a data event, and stored in the bstntuple format.

The pT spectrum of the B0
s is correlated with the final state angular distribution.

Because Monte Carlo is used to model the angular acceptance of the data, we must

demand good Monte Carlo/data agreement for the B0
s pT distribution. The agreement
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is improved by re-weighting the Monte Carlo events based on quantities that affect the

B0
s pT spectrum, namely track pT distributions and trigger composition.The Monte

Carlo data is split into several categories based on muon pT and whether the event is

CMU-CMU or CMU-CMX. Then the relative proportion of each of the categories is

weighted to produce the best possible agreement between data and Monte Carlo.

3.4 Toy MC Pseudo-experiments

We use toy Monte Carlo pseudo-experiments, called “toys” or “pseudo-experiements” at

several points in this measurement. They are extremely useful for testing the properties

of the likelihood function, and the behavior of a fit. They are particularly used for

studies where a full realistic Monte Carlo simulation is not necessary, and a simplified

simulation of the data is all that is required to test the fit behaviors. The pseudo-

experiment events are created by randomly sampling a probability density. The events

are generated according to a set of inputs for each parameter in the likelihood. These

inputs are defined by the user. The sample of pseudo-experiment events can then be

fit in the manner as a sample of data events.

As we will see in Sec. 4.1, the likelihood contains both signal and background.

Therefore, when generating pseudo-experiments, we can include background events,

parameterized in the same manner as the data.

Also, simplified versions of the likelihood can be used to generate pseudo-experiments.

For instance, signal-only toys may be used, or toys that do not account for detector

efficiency.

3.5 Neural Network Training

The removal of events for which a random combination of tracks happens to have an

invariant mass similar to the decay particle of interest is an important task. The goal

is to decrease combinatoric background as much as possible without removing signal

events. This is achieved by selecting events based on kinematic properties that are

different for signal and background. A standard figure of merit to optimize is S/
√
S +B

where S is the number of signal events and B is the number of background events. One

might optimize a selection by cutting on each selection variable with varying tightness,
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and choosing the cut value for each selection variable that optimizes the figure of merit.

This method, attractive in its transparency, does not account for correlations between

selection variables. It also gives each variable full power to accept or reject an event, so

an event which fails the cut for one variable will be discarded, even if it clearly passes

for all other variables, indicating that it is most likely a signal event.

A more sophisticated method of distinguishing signal from background is to use

an artificial neural network. Selection on all of the variables is combined into a single

discriminant, such that the value of a single variable does not decide with an event is

discarded. Based on the discriminant, an event is classified as signal-like or background-

like on a scale of +1.0 to -1.0. Correlations between variables are taken into account

by the neural network, and the weight of each variable in the overall discriminant is

affected by its correlation with other variables.

We use the Neurobayes package [55]. It is a three-layer network with an input layer,

a hidden layer, and an output layer. A schematic is shown in Fig. 3.1. In the input

layer, there is one node for each input, in the hidden layer there are approximately as

many nodes as in the input layer, and in the output layer, there are as many nodes as

are demanded by the discriminant type. We require one output node.

Figure 3.1: Schematic of the three layers of the Neurobayes network.

Inputs to each node are combined together in a weighted sum, and then mapped

to the output interval [-1, +1] using a sigmoid function. The user defines the input

variables and the topology of the network. The weights with which the inputs are
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combined are determined by training the neural network. By training the network on a

known sample, the weights between the nodes can be optimized to give a discriminant

that makes the correct decision for a maximal number of events. Training is accom-

plished by minimizing an entropy function that compares the network output with the

true result. This is an iterative process, and the user must avoid over-training. If too

many iterations are made, the network begins to make selections based on statistical

fluctuations in the training sample.

Our neural network training signal sample is 350,000 B0
s → J/ψφ Monte Carlo

events, generated as described previously. The training background sample is 300,000

data events, taken from the J/ψφ invariant mass sideband region. We use 3.9 fb−1 of

data for the training of the background sample.

We use the following variables for selection, listed by rank. The better the rank

(the best rank is 1), the more important the variable is to the total discriminant. The

identification number is also listed for each variable:

• (1) pT of φ (5)

• (2) Kaon likelihood for K2 (11)

• (3) Kaon likelihood for K1 (10)

• (4) Muon likelihood for µ2 (9)

• (5) χ2
rφ for B0

s (2)

• (6) pT of B0
s (3)

• (7) Muon likelihood for µ1 (8)

• (8) vertex probability for Bs (4)

• (9) vertex probability for φ (6)

• (10) vertex probability for J/ψ (7).

The vertex probabilities are χ2 probabilities for the 3D vertex fit. The muon and

kaon likelihoods are quantities used for particle identification. The algorithm used to

determine the muon likelihood is described in [56]. The kaon likelihood is a discriminant

constructed from dE/dx and TOF information.
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The correlations between the variables is shown in Fig. 3.2. There is no sign of

large, unexplained correlations between training variables.
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Figure 3.2: Correlations between variables used for signal selection. The eleventh row

and column show truth (signal or background). The other columns and rows are are the

selection variables, labeled by identification number.

The results of the neural network training are shown in Fig. 3.3. The neural network

output distributions for signal (red) and background (black) of the training sample are

shown in the left plot. The separation between signal (+1) and background (−1)

is good. The right plot shows purity of the test sample as a function of network

output cut. This is a linear relation, as it should be if the network has been trained

properly: the tighter the cut, the greater the background rejection. Fig. 3.4 shows

the network efficiency in classifying the signal training sample. The black curve is the

actual efficiency, the red curve is the maximum possible efficiency, and the blue curve

corresponds to classifying events randomly. Our network performs with nearly optimal

efficiency on the training sample.

3.6 Signal Optimization

After the neural network has been trained, the next step is to choose a value of network

output at which to cut. Traditionally, this is accomplished by optimizing the figure of

merit S/
√
S +B. This figure of merit optimizes the B0

s signal significance. It is not
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Figure 3.3: Signal (red) and background (black) distributions for training samples versus

network output (left). Purity of test sample versus network output cut (right).
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Figure 3.4: Signal efficiency versus efficiency for the training sample. The red curve is

optimal performance, the black curve is actual performance, and the blue curve corresponds

to random decision-making.
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clear, though, that is the optimal figure of merit for this analysis. We want to optimize

sensitivity to βs, not to the B0
s signal. Our sensitivity to βs has been shown on previous

rounds of the analysis to be limited by statistics. As such, sensitivity to βs may increase

using a looser cut than that suggested by S/
√
S +B optimization, adding more signal

events, even at the expense of adding more background. We study the sensitivity to βs

as a function of neural network cut on toy Monte Carlo pseudo-experiments. This is a

new feature of the analysis that was not used in previous measurements.

The effect of tightening the cut on the neural network output is simulated in pseudo-

experiments generated at different values of S/NTOT , where NTOT is the total number

of events in the J/ψφ invariant mass window, and S is the number of Bs signal events.

NTOT and S are determined from mass fits to 3.9 fb−1 of data. Mass histograms are

filled for a variety of neural network output cuts between -1.0 and 1.0. An invariant

J/ψφ mass window between 5.27 and 5.46 GeV/c2 is used. The resulting distribu-

tions are fit with a single Gaussian for the signal and a first order polynomial for the

background, and S and NTOT are extracted.

The input values of all other parameters are kept the same for pseudo-experiments

corresponding to each neural network cut; only NTOT and S/NTOT are varied. The

parameter input values are taken from the results of an un-binned maximum likelihood

fit on 2.8 fb−1 of data [57]. The only exceptions are the parameters describing the

tagging power, which was compromised for the 2.8 fb−1 result. We generate toys with

a tagging power equivalent to using uncompromised tagging in the full data set. We

generate at βs=0.5 and ∆Γ=0.12, corresponding to fitted values from the analysis with

2.8 fb−1 [57].

We generate and fit 700 pseudo-experiments at each neural network output cut

value, and then examine for each case the βs error distribution. The error distributions

were fit with Landau functions to extract their most probable values. An example is

shown in Fig. 3.5, indicating how well the Landau function describes the error distri-

butions.

The fitted most probable value is shown as a function of network output cut in

Fig. 3.6. We verify that the width of the error distributions do not vary as a function

of network output cut. Such a behavior could introduce an apparent trend in the most

probable value versus network output cut that does not, in fact, exist.

63



3. DATA SELECTION AND RECONSTRUCTION
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Figure 3.5: Example of a βs error distribution fit with a Landau function to extract the

most probable value.

Fig. 3.6 shows that tight cuts on the neural network output cut correspond to larger

βs errors. A looser cut, for example at a network output of 0.2, minimizes the errors

on βs, and thus maximizes our sensitivity. It should be emphasized that this technique

is not intended to guarantee a particular error on βs, but is merely used to identify the

trend in βs error size as a function of neural network output cut.

In order to verify that the trend in the sensitivity to βs as a function of network

output cut is independent of the true values of our parameters of interest, βs and

∆Γ, we repeat the same study at different generated values of βs and ∆Γ. The first

alternative input we choose is the standard model point, βs=0.02, ∆Γ=0.1. About 800

toys were generated per cut for this case. The second alternative input was βs=0.3,

∆Γ=0.09. The number of toys generated per cut was ∼600 for this set of βs/∆Γ input

values.

The most probable value is plotted versus network output cut for βs=0.02 and

∆Γ=0.1 and for βs=0.3 and ∆Γ=0.09, shown in Fig. 3.7 and Fig. 3.8. The trend in

size of βs errors is similar, regardless of the values of βs and ∆Γ at which the toys are

generated. βs errors are large for tight cuts on the neural network output, but for looser

cuts, the errors are smaller and appear to be insensitive to the amount of background.

Based on this observation, we chose a cut at a network output of 0.2, where the βs
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Figure 3.6: Magnitude of error on βs as a function of neural network output cut, for

βs=0.5 and ∆Γ=0.12.
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Figure 3.7: Magnitude of error on βs as a function of neural network output cut, for

βs=0.02 and ∆Γ=0.1.
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Figure 3.8: Magnitude of error on βs as a function of neural network output cut, for

βs=0.3 and ∆Γ=0.09.
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errors are small, but we avoid adding unnecessary amounts of background. Comparing

this optimization procedure with the standard optimization of S/
√
S +B shown in

Fig. 3.9, the cut that we choose based on studying the sensitivity to βs is somewhat

looser than the one we would choose based on optimizing S/
√
S +B (0.2 versus 0.6).
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Figure 3.9: Yield, number of background events, S/B, and S/
√
S +B as a function of

neural network cut.

The J/ψφ invariant mass distribution with the chosen cut applied is shown in

Fig. 3.10. A cut on the neural network output of 0.2 yields 6504±85 Bs → J/ψφ signal

events, as extracted by a fit with a single Gaussian with flat background. The signal
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and sideband regions are indicated by the blue and red lines, respectively.
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Figure 3.10: J/ψφ invariant mass distribution with a cut of 0.2 on the neural network

output. Blue and red lines denote the signal and sideband regions, respectively.
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Chapter 4

Analysis Strategy

4.1 General Form of the Likelihood

The time and angular dependent probability density functions (PDFs) for B0
s and B̄0

s ,

presented in Chapter 1, cannot be used alone to extract βs from the data. Detector

effects, such as imperfect angular efficiency and resolution smearing must be taken into

account. In addition to describing the B0
s and B̄0

s events found in the data, we must

also describe another major component of the data, the background. We construct a

larger PDF for each event that includes, for instance, the candidate’s mass and proper

time PDFs. Often, probability densities for the same quantities are different for signal

and background, so we have

Ptot = fsPs(~q) + (1− fs)Pb(~q), (4.1)

where Ps and Pb are the PDFs for signal and background, fs is the signal fraction, and

~q is the ensemble of variables that parameterizes an event.

The value of Ptot is multiplied for all B0
s/B̄

0
s candidates in the data sample to

produce the likelihood function L. By finding the value of each variable in the like-

lihood that maximizes L, we maximize the related probabilities. We use the minuit

minimization program [58] to maximize L, or rather, to minimize -2 lnL, minuit’s

score function. The technique used is referred to as an unbinned maximum likelihood

fit, indicating that the PDFs are maximized event-by-event; we do not fit histograms

containing the distribution of all events.
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In this chapter, we will describe in detail all of the probability density functions

that combine into the total PDF, and present the likelihood. This will include an

explanation how detector effects are handled in the angular and lifetime parts of the

measurement. Also, the flavor tagging algorithms and their calibrations are discussed.

4.2 Angular analysis

The final state distributions of transversity angles are modeled using the probability

densities of Eq. 1.70 and Eq. 1.71 for signal events. The effect of the angular efficiency

of the CDF detector on the angular distribution must be considered in the likelihood.

The angular acceptance of the detector is not uniform, so a flat angular distribution

will be sculpted by the angular acceptance, such that its measured distribution is no

longer flat.

The background is modeled empirically based on events from the B0
s mass sidebands

(shown in Fig. 3.10). Since we model real background events empirically, an efficiency

correction for the background is not necessary, as the effects of the efficiency are already

included in the angular distributions.

4.2.1 Normalization and angular efficiency

The probability density functions given in Chapter 1 were normalized to one. The CDF

detector, however, does not have perfect efficiency as a function of angle. The PDFs

must be multiplied by an angular efficiency term, ǫ(ψ, θ, φ). This necessitates updating

the normalization to account for the new efficiency term.

Normalization in the absence of a non-resonant S-wave contribution

We first describe the normalization of the probability density functions given in

Eq. 1.54 and Eq. 1.55, not accounting for contributions from f0 or non-resonantK
+K−.

The extension of the normalization to include the additional contributions is relatively

minor, and is given in Sec. 4.2.1.

First, we define the normalization. We demand that the probability density for the

B0
s and B̄0

s , including detector efficiency, be normalized to one:

1

N

∫ ∫ ∫ ∫

∑

i=B,B̄

Pi(ψ, θ, φ, t)ǫ(ψ, θ, φ)d(cos ψ)d(cos θ)dφdt = 1. (4.2)
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The normalization is therefore

N =

∫ ∫ ∫ ∫

∑

i=B,B̄

Pi(ψ, θ, φ, t)ǫ(ψ, θ, φ)d(cos ψ)d(cos θ)dφdt. (4.3)

We can integrate over time, and expand the efficiency as an (infinite) sum of spher-

ical harmonics Y m
l , with expansion coefficients aml :

ǫ(ψ, θ, φ) =
∑

l,m

aml (ψ)Y
m
l (θ, φ). (4.4)

The angular terms in the PDFs can also be expanded as non-infinite sums of spher-

ical harmonics, including harmonics up to l = 2. The property

∫ ∫

Y m
l (θ, φ)(−1)−mY −m′

l′ (θ, φ) sin θdθdφ = δmm′δll′ (4.5)

guarantees that N will be a finite sum after integrating over the angles θ and φ, with

only harmonics up to l = 2 contributing. We use the following relations

Ylm = Y m
l (m = 0),

Ylm =
1√
2
(Y m
l + (−1)mY −m

l ) (m > 0),

Ylm =
1

i
√
2
(Y

|m|
l )− (−1)|m|Y

−|m|
l ) (m < 0) (4.6)

and

alm = aml (m = 0),

alm =
1√
2
(aml + (−1)ma−ml ) (m > 0),

alm =
i√
2
(a

|m|
l )− (−1)|m|a

−|m|
l ) (m < 0) (4.7)

to re-express N in terms of real quantities:
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N =
3

8
√
π

[

(|A⊥|2 + |A|||2)
∫

a00(ψ)sin
2ψd(cos φ) + 2|A0|2

∫

a00(ψ) cos
2 ψd(cosψ)

]

+
3

8
√
5π

[

(−|A⊥|2 +
1

2
|A|||2)

∫

a20(ψ) sin
2 ψd(cosψ) + |A0|2

∫

a20(ψ) cos
2 ψd(cosψ)

]

− 9

16
√
5π

1
√

1 + 4τLτH
((τL−τH sin 2βs)2

)

[

(A∗
||A⊥ +A||A

∗
⊥)

∫

a2−1(ψ) sin
2 ψd(cosψ)

]

+
9

16

√
2√

15π

1
√

1 + 4τLτH
((τL−τH sin 2βs)2

)

[

(A∗
0A⊥ +A0A

∗
⊥)

∫

a21(ψ) sinψ cosψd(cosψ)

]

+
9

8
√
15π

[

|A|||2
2

∫

a22(ψ) sin
2 ψd(cosψ)− |A0|2

∫

a22(ψ) cos
2 ψd(cosψ)

]

+
9

16

√
2√

15π

[

(A∗
0A|| +A0A

∗
||)

∫

a2−2(ψ) sinψ cosψd(cosψ)

]

.

(4.8)

The coefficients alm(ψ) can be expressed as a Legendre series,

alm(ψ) = aklmPk(cosψ), (4.9)

in order to isolate their dependence on ψ for the final integration. After integration

over ψ, we are left with

N =
3

8
√
π

[

4a000
3

(|A0|2 + |A|||2 + |A⊥|2) +
4a200
15

(2|A0|2 − |A|||2 − |A⊥|2)
]

+
3

8
√
5π

[

2a020
3

(|A0|2 + |A|||2 − 2|A⊥|2) +
4a220
15

(|A0|2 −
1

2
|A|||2 + |A⊥|2)

]

− 9

16
√
5π

1
√

1 + 4τLτH
((τL−τH sin 2βs)2)

[

(A∗
||A⊥ +A||A

∗
⊥)(

4

3
a02−1 −

4

15
a22−1)

]

+
9

16

√
2√

15π

1
√

1 + 4τLτH
((τL−τH sin 2βs)2

)

[

(A∗
0A⊥ +A0A

∗
⊥)(

πa121
8

− πa321
32

+ . . .)

]

+
9

8
√
15π

[

2a022
3

(−|A0|2 + |A|||2)−
4a222
15

(|A0|2 +
1

2
|A|||2)

]

+
9

16

√
2√

15π

[

(A∗
0A|| +A0A

∗
||)(

πa12−2

8
− πa32−2

32
+ . . .)

]

.

(4.10)
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Normalization including a non-resonant S-wave contribution

The addition of terms in the PDF for an f0/non-resonantK
+K− contribution spoils

the normalization just described. To reset the normalization of the new PDF to one,

we must add two terms to N to find the new normalization, Nswave.

Nswave = (1− fswave) ·N + 2Re[Iµ ·N ′] + fswave ·N ′′ (4.11)

with

N ′ =
√
3A∗

0(
1

6
√
π
a100 +

1

12
√
5π
a120 −

1

4
√
15π

a122)

+
3

16

√

2

5π
A∗

‖(
π

2
a02−2 −

π

8
a22−2 + ...)

+
3

16

√

2

5π
A∗

⊥

sin 2βs(τL − τH)
√

((τL − τH) sin 2βs)2 + 4τLτH
(
π

2
a021 −

π

8
a221 + ...)

(4.12)

and

N ′′ =
1

2
√
π
a000 +

1

4
√
5π
a020 −

3

4
√
15π

a022,

(4.13)

where fswave is the fraction of f0/non-resonant K
+K−, and Iµ was defined in Eq. 1.72

as an integral over the φ resonance, containing the dependence on the f0/non-resonant

K+K− phase δS . Eq. 4.11 is our final form of the normalization. The coefficients aklm

can be determined from data to fully parameterize the normalization.

Fitting the angular efficiency

We have introduced an analytic normalization for the PDF which accounts for the

angular efficiency of the detector. We must now turn to handling the angular efficiency

itself, which appears in the PDF.

We use the realistic B0
s → J/ψφ Monte Carlo described in the previous chapter to

fit the angular efficiency. The Monte Carlo is generated with a phase-space model which

yields flat distributions in the transversity angles before going through reconstruction.

After reconstruction, the angles are sculpted by the detector efficiency in exactly the
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same way that the data is sculpted. Thus, fitting the distribution of transversity angles

for the Monte Carlo allows us to parameterize the detector efficiency. The Monte Carlo

has been re-weighted according to track pT and trigger composition, as described in

Sec. 3.3, to ensure optimal data/Monte Carlo agreement in the transversity angles.

We can expand the efficiency function from Eq. 4.4 as a sum of Legendre polyno-

mials:

ǫ(ψ, θ, φ) =
∑

lmk

aklmPk(cosψ)Ylm(θ, φ), (4.14)

where we equate the Monte Carlo (ψ, θ, φ) distribution with the detector efficiency. We

can further expand the (θ, φ) dependence in a sum of real spherical harmonics:

Ylm(θ, φ) =

∞
∑

l=0

l
∑

m=0

[Clm cos(mφ) + Slm sin(mφ)]Pml (cosθ), (4.15)

and include the dependence on ψ by expanding Clm and Slm in Legendre polynomials

Clm =

∞
∑

k=0

Cklm

√

(2k + 1)

2
Pk(cosψ), (4.16)

Slm =
∞
∑

k=0

Sklm

√

(2k + 1)

2
Pk(cosψ). (4.17)

The expansion coefficients in Eq. 4.14, aklm can be described in terms of Cklm and

Sklm. We fit the distribution of transversity angles in the Monte Carlo to extract the

expansion coefficients. We find that expanding to order 5 in l and m and order 2 in k

is sufficient to make a good fit. The list of fitted coefficients is shown in Table 4.1.

A two dimensional projection of the fit in θ and φ, integrating over ψ, is shown

in Fig. 4.1. The fit residual, which is the difference between the fit function and the

Monte Carlo distribution, is shown in Fig. 4.2. The differences between the fit function

and the distribution being fit are small, indicating that the fit is good.

4.2.2 Modeling of background angles

The final state angular distributions of signal events are predicted by the expanded

version of Eqs. 1.70 and 1.71, but we do not have an a priori prediction for the PDF of
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Parameter Value

C0
00 843.960 ± 0.779

C2
00 -9.004 ± 0.780

C0
11 -3.733 ± 0.797

C2
11 -0.526 ± 0.797

S0
11 0.631 ± 0.770

S2
11 -0.435 ± 0.772

C0
10 0.226 ± 0.770

C2
10 1.097 ± 0.771

C0
22 40.294 ± 6.925

C2
22 -2.710 ± 6.938

S0
22 0.468 ± 7.018

S2
22 0.504 ± 7.028

C0
21 0.784 ± 0.792

C2
21 1.267 ± 0.793

S0
21 -0.303 ± 0.761

S2
21 -1.301 ± 0.764

C0
20 -32.327 ± 0.771

C2
20 0.227 ± 0.772

C0
33 -0.094 ± 0.451

C2
33 -0.188 ± 0.452

S0
33 2.599 ± 0.455

S2
33 -1.092 ± 0.456

C0
32 11.298 ± 6.119

C3
32 -1.264 ± 6.131

S0
32 -0.026 ± 6.199

S2
32 0.523 ± 6.208

C0
31 0.384 ± 0.776

C2
31 -0.708 ± 0.777

S0
31 -0.716 ± 0.755

S2
31 -1.186 ± 0.757

C0
30 -0.280 ± 0.786

C2
30 1.042 ± 0.786

C0
44 -21.416 ± 0.782

C2
44 -0.690 ± 0.784

S0
44 -0.110 ± 0.786

S2
44 -0.036 ± 0.788

Parameter Value

C0
43 -0.738 ± 0.784

C2
43 0.608 ± 0.786

S0
43 0.698 ± 0.786

S2
43 0.768 ± 0.788

C0
42 3.80 ± 7.98

C2
42 0.997 ± 7.999

S0
42 -0.580 ± 8.089

S2
42 -0.547 ± 8.101

C0
41 -0.444 ± 0.769

C2
41 0.761 ± 0.770

S0
41 -0.279 ± 0.746

S2
41 -0.538 ± 0.748

C0
40 -13.408 ± 0.800

C2
40 -1.166 ± 0.801

C0
55 0.214 ± 0.784

C2
55 -0.674 ± 0.786

S0
55 6.078 ± 0.784

S2
55 -0.946 ± 0.785

C0
54 2.029 ± 0.786

C2
54 -0.187 ± 0.787

S0
54 0.357 ± 0.787

S2
54 0.253 ± 0.789

C0
53 -0.790 ± 0.777

C2
53 1.179 ± 0.778

S0
53 -2.598 ± 0.782

S2
53 0.244 ± 0.783

C0
52 6.060 ± 3.667

C2
52 0.001 ± 3.674

S0
52 0.045 ± 3.715

S2
52 -0.024 ± 3.721

C0
51 -0.913 ± 0.758

C2
51 -0.095 ± 0.758

S0
51 1.197 ± 0.738

S2
51 -1.135 ± 0.739

C0
50 -1.891 ± 0.828

C2
50 0.545 ± 0.830

Table 4.1: Fitted values of expansion coefficients for the angular efficiency function.

77



4. ANALYSIS STRATEGY

Figure 4.1: Projection in cos θ and φ space of the fit of the Monte Carlo transversity

angles.
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Figure 4.2: Residual for the fit in cos θ and φ space of the Monte Carlo transversity

angles.
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the background angular distributions. We describe the background transversity angles

cos θ, φ and cosψ using events from the B0
s mass sideband regions.

We assume that correlations between the angles are small, and that we can describe

each angle with an independent function:

f(ψ, θ, φ) = f(ψ)f(θ)f(φ). (4.18)

The validity of this assumption is tested, and a systematic uncertainty is assigned to

the small correlation found between the angles. This is described in Sec. 5.2.2.

We parameterize the distributions empirically, using the following expressions:

f(cos θ) =
a1cos

2(θ)

2a1/3
(4.19)

f(φ) =
b1cos(2φ)

2π
(4.20)

f(cosψ) =
c1cos

2(ψ)

2c1/3
. (4.21)

The background angular distributions are fit using our empirical functions to ob-

tain starting values for the coefficients a1, b1 and c1, and to ensure that the empirical

description of the angles is reasonable. The coefficients are allowed to float freely in

the unbinned maximum likelihood fit used to extract βs. The agreement between the

fit and the background angular distributions is shown in Fig. 4.3.

4.3 Flavor tagging

To maximize sensitivity to the CP -violating phase βs, we must determine whether the

measured B meson was a B0
s or B̄0

s at production. This is referred to as the production

flavor: whether the initial B meson contained a b or b̄ quark. As we determined in

Chapter 1, if we do not distinguish whether the meson was initially a B0
s or B̄0

s , we

lose access to many terms in the probability density function that contain βs. It is

worth noting that some decays are self-tagging, or in other words, decayed to a state
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Figure 4.3: Distribution of transversity angles in the B0
s mass sideband region.

with charged particles that allowed the determination of the flavor at decay time, with

the external knowledge of ∆ms and measurement of the proper decay time, we could

determine the initial meson flavor. Because the J/ψ and φ are neutral, we cannot

identify the flavor at decay, and therefore must rely on flavor tagging to identify the

production flavor. Flavor tagging algorithms assign a tagging decision of ξ = +1, -1,

or 0, corresponding to B0
s at production, B̄0

s at production, or no tag assigned.

There are two general classes of flavor tagging algorithms, or flavor taggers: opposite

side and same side. A complete description of the algorithm is beyond the scope of this

thesis. Only a brief overview of the methods is given. Many references exist for both

the opposite side tagger [59, 60, 61] and the same side tagger [62, 63, 64].

The schematic in Fig. 4.4 illustrates the two types of tagging. The same side tagger

uses a charged track produced in association with the b/b̄ quark in the B̄0
s/B

0
s . Its

charge tags the production flavor of the B meson. The opposite side taggers capitalize

on the fact that most b quarks produced in pp̄ collisions are produced as bb̄ pairs. The

b or b̄ quark on the opposite side of the B0
s candidate hadronizes into a B meson.

The B meson can be tagged by its decay products, although the situation is somewhat

complicated if it is a B0 meson, and and can mix before decaying. If the opposite side

quark is tagged as a b, the B0
s candidate must contain a b̄, and if the opposite side

quark is tagged as a b̄, the B̄0
s candidate must contain a b. Opposite tagging is based

on several algorithms that tag on the type of opposite side decay product, including

the soft lepton tagger, the soft muon tagger and the jet charge tagger.

In a real detector environment, taggers suffer from inefficiencies and mis-tags. We

introduce several variables to quantify the tagging power. The first consideration is
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Figure 4.4: Schematic demonstrating same and opposite side flavor tagging algorithms.

the inefficiency of the tagger. Not every event receives a tag, as there is not always

adequate information to make a tag decision. The efficiency is defined as the number

of events that receive a tag, divided by the total number of events considered.

The dilution D quantifies the probability of an event receiving an incorrect tag.

The dilution is defined as

D = 1− 2pW , (4.22)

where pW is the probability of a mis-tag. Thus, the probability of a mis-tag is pW =

(1 − D)/2, while the probability of a correct tag is pR = (1 + D)/2. The dilution is

obtained by counting the number of incorrectly assigned tags,

D =
NR −NW

NR +NW
, (4.23)

whereNR is the number of correct tags andNW is the number of incorrect tags. Clearly,

the optimal dilution has a value of one (zero mistags). A dilution of zero corresponds

to random tagging assignments, which have a 50% chance of tagging correctly or in-

correctly. A dilution of -1, is in fact, as powerful as a dilution of 1. If the mis-tag rate

is known to be 100%, one can merely flip the tag decision to obtain perfect dilution.
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In addition to the tagging decision ξ, tagging algorithms assign an event-by-event

predicted dilution, based on the event variables on which the mis-tag probability de-

pends. The dilution prediction is based on the detector environment for a particular

event. The predicted dilutions are important because they assign a confidence to the

tag decision and make it possible to transfer a tagging algorithm from the data sample

on which it was developed to a different data sample. The predicted dilution distribu-

tions for our data sample are shown in Figs. 4.5 and 4.6. Fig. 4.5 shows the predicted

dilution for the opposite side tagger, for sideband subtracted signal events (signal),

and for events from the sideband region (background). Fig. 4.6 shows the predicted

dilution distribution for the same side tagger. Note that for both the opposite and

same side taggers, the predicted dilution distributions are slightly different for signal

and background events. We account for this effect in the unbinned maximum likelihood

fit.

dilution     
0.0 0.2 0.4 0.6 0.8 1.0
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Figure 4.5: Predicted dilution for opposite side tagger.

The tagging power depends on both dilution and efficiency. The most commonly

used figure of merit to characterize the tagging power is ǫ〈D2〉, where the average

dilution is calculated by summing over the event by event dilution.

We use multiple tagging algorithms in this analysis, which necessitates a combina-

tion of the dilutions for an overall measure of the tagging power. Assuming that two
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Figure 4.6: Predicted dilution for same side tagger.

tagging algorithms are independent, the dilutions can be combined as follows [65]. If

the tagging decisions agree, the combined dilution is

Dc =
D1 +D2

1 +D1D2
. (4.24)

If the decisions disagree, the combined dilution is

Dc =
|D1 −D2|
1−D1D2

. (4.25)

The probability of a particular combined tag decision is dependent on the efficiency

of each of the taggers, in the following way:

P (~ξ) =















(1− ǫ1)(1 − ǫ2) (ξ1 = 0, ξ2 = 0)
ǫ1(1− ǫ2) (ξ1 = ±1, ξ2 = 0)
(1− ǫ1)ǫ2 (ξ1 = 0, ξ2 = ±1)
ǫ1ǫ2 (ξ1 = ±1, ξ2 = ±1)

(4.26)

In the case of combining an opposite side tag with a same side tag, the algorithms

are indeed independent, since after production of the initial bb̄ pair, the opposite and

same side hadronization and decay processes are uncorrelated.
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4.3.1 Opposite side tagging

The opposite side flavor tagger is a combination of several algorithms: the soft muon

tagger (SMT), the soft electron tagger (SET), and the jet charge tagger (JQT). The

names refer to the charged object used to determine the flavor of the opposite side b

quark. Each of the algorithms will be discussed individually.

The outcomes of the three tagging algorithms are combined to give a single opposite

side tag decision and predicted dilution. This can be done hierarchically, based on the

relative dilutions of the taggers. The SMT has the highest dilution, followed by the

SET and then the jet charge tagger. Thus, if there is a soft muon tag decision for an

event, it will be taken as the final tag decision. If there is no soft muon tag decision,

but a soft electron tag decision exists, the soft electron tag decision will be taken as

the final tag decision. If no soft muon or soft electron tag decision exists, the jet charge

tag decision is used.

In this thesis, we optimize the total dilution by combining the taggers using a neural

network. The neural network has the benefit of automatically handling correlations

between the tagging algorithms. This is helpful for combining the various opposite side

taggers, which are not guaranteed to be independent. It is trained on data from the

SVT+l trigger.

Lepton Tagging

The lepton taggers, SMT and SET, utilize the charge of a muon or electron to

determine the production flavor of their parent B meson. As they are the products of

semi-leptonic decays b→ cl−ν̄lX and b̄→ c̄l+X, one can infer that a positive muon or

positron comes from a b̄ at production, and a negative muon or electron from a b.

The efficiency of the lepton taggers is low, due to the low branching fractions for

semi-leptonic decays (B → lX). Also, detector and tracking inefficiencies lower the

efficiency of the lepton tagging algorithms. The mis-tag rate is increased by the possi-

bility of mixing, if the lepton came from a B0 decay. Mis-tags are also caused by the

presence of b → c → lX decays, which can be misidentified as b → lX decays. In this

case, the lepton will have the opposite sign as if it came directly from a b transition,

and the tag decision will be the negative of the correct decision. Compared to the jet

charge tagging algorithms, the lepton tagging algorithms have a high dilution but a

low efficiency.
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The leptons used in the tagging algorithms are selected based on their electron

or muon likelihoods. Track quality cuts are imposed, ensuring that low pT , poorly

measured tracks are not used. The predicted dilution is determined using the lepton

likelihoods, and the lepton’s prelT , the transverse momentum of the track relative to the

axis of the cone in which it was found. The axis of the cone is determined by the B

momentum direction. To be selected as a track for tagging, a track must fall within a

cone of a selected radius. A schematic illustrating the cone and prelT is shown in Fig. 4.7.

Figure 4.7: Illustration of prelT and cone.

Jet Charge Tagging

The jet charge tagging algorithms use the fact that if a b quark fragments into a

jet, the jet should have the same charge as the b quark the produced it. The charge of

the jet is determined by taking the momentum-weighted sum of the tracks in the jet,

as follows:

Qjet =

∑

iQ
ipiT (1 + P itrk)

∑

i p
i
T (1 + P itrk)

, (4.27)

where P itrk is the probability of the track being part of the b jet. IfQjet is approximately

−1/3, the jet is presumed to have come from a b quark, if it is +1/3, the jet is presumed

to have come from a b̄ quark.

The jet is identified by defining a cone around the momentum direction of the

reconstructed B meson. Tracks belonging to the jet must fall within the cone. Various
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selection requirements based on track pT and impact parameter are applied to further

isolate the tracks in the jet. If a displaced vertex can be identified within the cone, the

chances that the jet was produced by b fragmentation are increased.

Jets are separated into three classes, based on their ability to meet the b jet selection

requirements. A Class 1 jet has an displaced vertex within the jet isolation code, and

Lxy/σ(Lxy) > 3. A Class 2 jet is any jet containing a track with Ptrk > 0.5 GeV/c. A

Class 3 jet is a jet that passes the selection requirements for identifying a jet. A Class

3 jet can be identified for nearly 100% of events. Due to the loose restrictions on the

jets used for the jet charge tagging algorithm, the tagger has an very high efficiency,

but poor purity. The average dilution for the JQT is significantly lower than for the

semi-leptonic taggers.

Calibration of opposite side tagging

The opposite side taggers are calibrated on data from the SVT+l trigger, while this

analysis uses data from the di-muon trigger. Thus, it is necessary to verify that the

predicted dilution is not sample dependent, and that the measured dilution on di-muon

data matches the predicted dilution from calibration on the SVT+l data.

We study the behavior of the opposite side taggers on the control channel B+ →
J/ψK+. It is assumed that the opposite side hadronization has identical behavior on

the B+ → J/ψK+ sample as on B0
s → J/ψφ. Since the B+ → J/ψK+ sample is

self-tagging, the predicted dilution can be compared to the true, observed dilution to

calculate a dilution scale factor. The B+ → J/ψK+ channel also has the benefit of

higher statistics than the B0
s samples: 52,000 signal events. B+ → J/ψK+ decays are

selected from the di-muon data sample using a similar neural network to the one used

for selecting B0
s → J/ψφ decays. The cut on the neural network output is a chosen by

optimizing S/
√
S +B. The resulting J/ψK+ invariant mass distribution is shown in

Fig. 4.8.

The production flavor of the B+ is easily identified by checking the charge of the

kaon daughter track, since a K+ must be the daughter of a B+, and a K− must be the

daughter of a B−. Using the kaon charge, we can determine the measured dilution in

bins of the predicted dilution. If the shape of the measured versus predicted dilution

histogram is a straight line with a slope consistent with unity, we can conclude that

the tagger calibration from the SVT+l trigger data is appropriate for di-muon data.

The slope of this line gives us the value for a scale factor associated with the opposite
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Figure 4.8: J/ψK+ invariant mass distribution.

side tagger. The scale factor accounts for the effect of applying the OST on a new data

sample, and takes any unexpected inefficiencies into consideration that prevent the real

dilution from matching the predicted one.

We use two scale factors for the opposite side tagger, one for B+ mesons and one

for the B− mesons, to allow for any asymmetry in the tagging algorithms. For both

B+ and B−, we use one scale factor to describe the entire dataset. As a cross-check,

though, we determine the scale factors in different periods of the data, to ensure that

the scale factors are stable and consistent with one throughout all parts of the data. The

measured versus predicted dilution histograms for B+ and B− are shown in Fig. 4.9.

The corresponding histograms for different times of data taking are shown in Figs. 4.10-

4.12. Table 4.2 reports the OST dilution scale factors in different parts of the data.

Additionally, we measure a tagging efficiency of 94.3±0.3 and an average predicted

dilution on the B+ → J/ψK+ signal of (6.9±0.1)%.

Scale Factor Period 0-9 Period 10-16 Period 17-25 Period 0-25

S+
D

0.83 ± 0.13 0.89 ± 0.16 0.98 ± 0.16 0.93± 0.09

S−
D

1.03 ± 0.17 1.10 ± 0.18 1.13 ± 0.15 1.12± 0.10

Table 4.2: OST dilution scale factors for B+ and B− in different parts of the data.
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Figure 4.9: Measured versus predicted dilution for B+ (left) and B− (right) for the entire

data sample.
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Figure 4.10: Measured versus predicted dilution for B+ (left) and B− (right) for data

taken between February 2002 and November 2006.
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Figure 4.11: Measured versus predicted dilution for B+ (left) and B− (right) for data

taken between November 2006 and February 2008.
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Figure 4.12: Measured versus predicted dilution for B+ (left) and B− (right) for data

taken between February 2008 and June 2009.
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4.3.2 Same side tagging

The principle of the same side tagging method is significantly different from that of

opposite side tagging, where the hadronization and fragmentation of the opposite side

b quark is independent of the species of the B meson of interest. Therefore, we can

develop an opposite side tagging algorithm on high statistics B+ samples.

In the case of same side tagging, we tag with tracks that are produced in association

with the reconstructed B meson. The type of track produced in association with the

B meson varies depending on the species of the reconstructed B meson, as shown in

Fig. 4.13. The associated track is a combination of the non-b quark in the reconstructed

B meson, and a matching anti-quark from a vacuum-produced qq̄ pair. Thus, the other

quark in the B meson determines the type of associated track produced, which will be

different for a B+, a B0, or a B0
s meson.

Thus, the SST algorithm was developed on a high statistics B0
s Monte Carlo sample,

and is calibrated on B0
s data. In the case of the B0

s meson, the leading associated track

is a kaon. A K+ will tag a B0
s meson, while a K− tags a B̄0

s meson. However, the B0
s

could be accompanied by an associated track from a neutral K∗0 or Λ, which are not

able to tag the B0
s flavor and therefore lower the tagging efficiency.

The selection on associated tracks used for same side tagging is similar to the selec-

tion for opposite side tracks. Tracks must be within a cone around the B0
s momentum

to be considered tag candidates, and tracks must have pT > 0.4 GeV/c. The same

side tagging power benefits from the use of particle identification (dE/dx and time of

flight) to identify the associated track as a kaon. This decreases the mis-tag rate, which

occurs if a pion is mistakenly identified as an associated kaon. Particle identification,

as well as information about track momentum, is used to decide which track to choose

as the tagging track, if there are multiple possible tagging tracks in an event.
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Figure 4.13: Tracks produced in association with B mesons, used for same side tagging.
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Calibration of same-side tagging

The same side kaon tagger (SSKT) has been calibrated using the most recent mea-

surement of B0
s mixing [66], made on 5.2 fb−1 of data. This is the first time that the

dilution scale factor for the same side kaon tagger has been determined from data,

rather than Monte Carlo. The calibration is achieved in the following way.

The probability for observing the B0
s in a flavor eigenstate as a function of time is

P (t)B0
s ,B̄

0
s
∝ |1± cos∆mst|. (4.28)

Adding in the effect of the measured dilution, our measurement probability becomes

P (t)B0
s ,B̄

0
s
∝ |1±D cos∆mst|. (4.29)

This can be re-expressed in terms of an amplitude,

P (t)B0
s ,B̄

0
s
∝ |1±ADp cos∆mst|, (4.30)

where Dp is the predicted dilution. The likelihood that uses this probability is nor-

malized such that at the correct value of the mixing frequency ∆ms, the amplitude is

one. If we fix ∆ms and measure the amplitude at each value of ∆ms, the true value of

∆ms should have the maximum amplitude. If the measured and predicted dilutions are

equal, the maximum amplitude will be exactly one, by normalization. The amplitude is

a scale factor for the dilution, relating the predicted dilution to the measured dilution.

The B0
s mixing measurement was made on 5.2 fb−1 of data collected with the two-

track trigger. B0
s events were fully reconstructed in four modes: B0

s → Dsπ with

Ds → φπ, B0
s → Dsπ with Ds → K∗K, B0

s → Dsπ with Ds → 3π, and B0
s → Ds3π

with Ds → φπ.

The ∆ms amplitude scan on 5.2 fb−1 of data is shown in Fig. 4.14. The maximum

amplitude in ∆ms occurs at ∆ms=17.79±0.07(stat.) ps−1, a value consistent with

the PDG average. We use the PDG average as an input in the unbinned maximum

likelihood fit, because the errors on ∆ms are smaller. The size of the amplitude at

maximum and the measured dilution scale factor for the same side kaon tagger is

SD=0.94±0.15 (stat)±0.13 (syst). We measure a tagging efficiency of 52.2±0.7, and an

average predicted dilution on B0
s signal of 21.8±0.3%.
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4.3.3 Tagging power

The tagging power ǫ〈D2〉 is scaled by the dilution scale factor to be ǫS〈D2〉. The

tagging power is 1.2±0.2% for OST, and 3.5±1.4% for SSKT. The tagging power is

quite low at the Tevatron, compared to the tagging power at the B factories or even

the predicted tagging power at LCHb. As a result, the main effect of tagging in this

analysis is to break the βs → −βs symmetry that exists without tagging, reducing

the number of valid solutions for βs from four to two. The tagging power is not large

enough to substantially reduce the errors on the remaining solutions. Each of the four

untagged βs solutions has comparable errors to those on the tagged βs solutions. An

example of this using a pseudo-experiment is shown in Fig. 4.15. The toy was fit with

and without considering tagging information for a grid of βs and ∆Γ values. Including

tagging removes one of the symmetries of the probability density, removing half of the

allowed region in βs −∆Γ space. The errors on the remaining allowed region, though,

are not noticeably reduced. If the tagging power were greater, we would expect our

sensitivity to βs to be substantially better in the tagged case, and the errors on βs to

be smaller.
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Figure 4.15: A pseudo-experiment fit with and without considering tagging information.
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4.4 Unbinned maximum likelihood fit

4.4 Unbinned maximum likelihood fit

We are now ready to introduce the likelihood function, which is a function of mass,

flavor tagging information, proper time, transversity angles, and the proper time error

distributions. The likelihood is different for signal and background events. It contains

the probability densities of Eq. 1.70 and 1.71 after including the detector efficiency and

the analytic normalization after the inclusion of the detector efficiency, such that

P ′(ψ, θ, φ, t) =
1

N
P (ψ, θ, φ, t)ǫ(ψ, θ, φ) (4.31)

and

P̄ ′(ψ, θ, φ, t) =
1

N
P̄ (ψ, θ, φ, t)ǫ(ψ, θ, φ). (4.32)

The likelihood function is as follows:

L = fs · Ps(m) · Ps(ξ) · T (t, ψ, θ, φ,D, ξ) · Ps(σt) · Ps(D)

+ (1− fs) · Pb(m) · Pb(ξ) · Pb(t, σt) · Pb(ψ) · Pb(θ) · Pb(φ) · Pb(σt) · Pb(D).

(4.33)

4.4.1 Signal likelihood

We present here a description of all the components of the signal likelihood function.

Mass (Ps(m))

The B0
s invariant mass distribution is modeled with a single Gaussian. Errors on

the mass distribution are assessed using event-by-event errors. The error distributions

are assumed to be the same for signal and background. We later assign a systematic

uncertainty to handle this assumption. A mass scale factor is floated in the fit to handle

for our imperfect knowledge of the mass resolution. The mass scale factor multiplies

each event-by-event mass error.

Proper time, angles, tagging (T (t, ψ, θ, φ,D1,D2, ξ1, ξ2))

The core of the likelihood function for signal, containing the proper time, angular,

and tagging dependence is given by
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T (t, ψ, θ, φ,D1,D2, ξ1, ξ2) =
1 + ξ1s1D1

1 + |ξ1|
1 + ξ2s2D2

1 + |ξ2|
P ′(t, ψ, θ, φ) ⊗G1(σt)G2(σt)

+
1− ξ1s1D1

1 + |ξ1|
1− ξ2s2D2

1 + |ξ2|
P̄ ′(t, ψ, θ, φ) ⊗G1(σt)G2(σt).

(4.34)

The probability densities P ′ and P̄ ′ are smeared with the functions G1(σt) and G2(σt)

to account for the proper time resolution (σt ∼25 µm). We model the proper time

resolution with two Gaussians, one broad, one narrow. This model was chosen because

it best describes the shape of the resolution function in the data. The Gaussians each

have an associated scale factor which floats in the fit, to handle possible mis-modeling

of the resolution. The fraction of the narrow to the broad Gaussian also floats in the

fit.

The coefficients on P ′ and P̄ ′ can be understood by returning to the expression

of the probability of correct tag, (1 + D)/2 for a B0
s , and (1 − D)/2 for a B̄0

s . The

probability density for the tag decision is then

PB0
s ,B̄

0
s
=

(1 +D)

2
P +

(1−D)

2
P̄ , (4.35)

or, including the possibility of mis-tag or no tag,

PB0
s ,B̄

0
s
=

1 + ξD

1 + |ξ| P +
1− ξD

1 + |ξ| P̄ . (4.36)

For two independent taggers, the coefficients to the probability densities combine

multiplicatively to

PB0
s ,B̄

0
s
=

1 + ξ1D1

1 + |ξ1|
1 + ξ2D2

1 + |ξ2|
P +

1− ξ1D2

1 + |ξ1|
1− ξ2D2

1 + |ξ2|
P̄ . (4.37)

Including the dilution scale factors s1 and s2, we have the coefficients shown in

Eq. 4.34. The dilution scale factors, as well as ∆ms, are determined from independent

measurements, not from our likelihood fit. Consequently, they are not allowed to float

freely in the fit, but are Gaussian-constrained within their errors in the likelihood fit.
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4.4 Unbinned maximum likelihood fit

Tagging decision and dilution (Ps(ξ), Ps(D))

The probability density Ps(ξ) is the probability density of a combined tagging de-

cision, using two taggers (opposite side and same side). The form of this PDF is given

in Eq. 4.26.

Tagging dilution distributions are taken from data. In the case of the signal, they are

the side-band subtracted distributions taken from the B0
s invariant mass signal region

and stored in histograms. The histograms are normalized to translate from dilution

distributions to probability densities for the dilution. The fit accesses one histogram

for the opposite side tagger and another for the same side tagger.

Proper decay time errors (Ps(σt))

The errors on the proper decay time are modeled using Gamma functions, such as:

Γ(x) =
xae−x/b

ba+1Γ(a+ 1)
. (4.38)

Two Gamma functions are used to describe the σt distribution for signal.

4.4.2 Background likelihood

We present here a description of all the components of the background likelihood func-

tion.

Mass (Pb(m))

The probability density for the background invariant mass is linear, modeled with

a degree one polynomial.

Tagging decision and dilution (Pb(ξ), Pb(D))

In the case of background, we are not concerned with the event-by-event dilution,

as we do not wish to determine the production flavor of background events. Knowledge

of the fractions of positively and negatively charged events is sufficient to describe the

behavior of the background. Therefore, the probability density Pb(ξ) is equal to the

fraction of events with positive tags for ξ=+1, and equal to the fraction of events with

negative tags for ξ=-1.

The background dilution distributions are handled analogously to the signal dilu-

tion. The dilution distributions are taken from the B0
s invariant mass sideband region,

normalized to form a probability density, and stored in histograms.

Proper decay time and errors (Pb(t|σt), Pb(σt))
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For the background proper decay time distribution, we follow CDF convention and

parameterize with a prompt peak, two positive exponentials, and one negative exponen-

tial. The prompt peak comes mostly from J/ψ’s that are not the decay products of a

B meson. The prompt peak, originally a delta function, is smeared with two Gaussians

in the same manner as the signal, to account for resolution effects. The exponentials

include long lived backgrounds from non B0
s decays and mis-reconstructed B decays.

The form of the probability density is

Pb(t|σt) =

(

fg + (1− fg)

(

f++

λ++
e
− t

λ++ + (1− f++)

(

f−
λ−

e
t

λ− +
(1− f−)

λ+
e
− t

λ+

)))

⊗ G1(σt)G2(σt), (4.39)

where fg is the fraction of prompt background, f++ is the fraction of background in the

longer positive exponential tail, and f− is the fraction of background in the negative

exponential tail.

The errors on the background proper decay time are parameterized with two Gamma

distributions, as described for the errors on the signal proper decay time.

Background angles (Pb(ψ), Pb(θ), Pb(φ))

The PDFs for the background transversity angles are parameterized using empirical

functions, based on cos or cos2 functions of the angles. The coefficients in the functions

are allowed to float in the fit.

4.4.3 Fit Variables

We list here all of the variables floating in the unbinned maximum likelihood fit, to

simplify the presentation of the fit results. The fit parameters are divided into the

physics parameters of interest, and nuisance parameters for which we are not interested

in quoting a value.

Physics Parameters

• βs

• ∆Γ

• φ||

• φ⊥
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4.4 Unbinned maximum likelihood fit

• αCPodd: related to |A⊥| (described below)

• α||: related to A0 and A|| (described below)

• fswave: fraction of f0/non-resonant K
+K−

• δS : phase of f0/non-resonant K
+K−

Nuisance Parameters

• m: B0
s mass

• ms: mass error scale factor

• N : number of B0
s signal events

• Bm: slope of line fitting background mass distribution

• fs: signal fraction

• S+
D
: OST dilution scale factor for B0

s

• S−
D
: OST dilution scale factor for B̄0

s

• SD: SSKT dilution scale factor for B0
s and B̄0

s

• ǫs(OST ): signal OST tagging efficiency

• ǫs(SSKT ): signal SSKT tagging efficiency

• ǫb(OST ): background OST tagging efficiency

• ǫb(SSKT ): background SSKT tagging efficiency

• A+(OST ): OST background positive tag asymmetry

• A+(SSKT ): SSKT background positive tag asymmetry

• cτ : B0
s proper decay time

• ∆ms

• fp: fraction of background in prompt lifetime peak
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• f−: fraction of background in negative lifetime tail

• f+: fraction of background in positive lifetime tails

• λ−: background lifetime for negative lifetime tail

• λ+: background lifetime for first positive lifetime tail

• λ++: background lifetime for second positive lifetime tail

• sf1: scale factor for first Gaussian in lifetime resolution

• sf2: scale factor for second Gaussian in lifetime resolution

• resfrac: fraction of first to second Gaussian in lifetime resolution

• φ: coefficient for background angle φ parameterization

• cosψ: coefficient for background angle ψ parameterization

• cos θ: coefficient for background angle θ parameterization

4.4.4 Definition of αCPodd and α||

Instead of using the transversity amplitudes in the fit, we use the CP odd and even

fractions, αCPodd and α||. The relationship between αCPodd and α|| and the transversity

amplitudes is as follows:

a|| = α||(1− αCPodd), (4.40)

a⊥ = αCPodd (4.41)

and

a2⊥ + a2|| + a20 = 0. (4.42)

The quantities a||, a⊥ and a0 are related to the amplitudes A||, A⊥ and A0 by
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4.4 Unbinned maximum likelihood fit

|A⊥|2 =
|a⊥|2y

1 + (y − 1)|a⊥|2
|a⊥|2 =

|A⊥|2y
y + (1− y)|A⊥|2

|A|||2 =
|a|||2

1 + (y − 1)|a⊥|2
|a|||2 =

|A|||2y
y + (1− y)|A⊥|2

|A0|2 =
|a0|2

1 + (y − 1)|a⊥|2
|a0|2 =

|A0|2y
y + (1− y)|A⊥|2

,

(4.43)

where y and z are defined as y = (1− z)/(1 + z) and z = cos 2βs∆Γ/(2Γ).

4.4.5 σt for signal and background

The coefficients for the Gamma functions describing the signal and background σt error

distributions are determined using a simplified, lifetime only fit, removing flavor tagging

and angular dependences. The parameterization of the Gamma functions is fixed in

the main fit, based on the simplified fit results. The fitted values of the free coefficients

a and b in the Gamma functions are given in Table. 4.3.

parameter value

a, signal, 1st Gamma function 9.96 ± 0.56

a, signal, 2nd Gamma function 6.07 ± 0.87

b, signal, 1st Gamma function 0.00018 ± 0.00001

b, signal, 2nd Gamma function 0.00044 ± 0.00004

a, background, 1st Gamma function 10.38 ± 0.16

a, background, 2nd Gamma function 3.70 ± 0.18

b, background, 1st Gamma function 0.000237±0.000004

b, background, 2nd Gamma function 0.00099 ± 0.00003

fraction of 1st to 2nd Gamma function in signal 0.76 ± 0.05

fraction of 1st to 2nd Gamma function in background 0.89 ± 0.01

Table 4.3: Fitted parameters for Gamma functions describing σ(ct)

4.4.6 Fitter Validation

The properties of the likelihood function are tested using pseudo-experiments. Pseudo-

experiments are generated by sampling the input probability density functions. They
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are a useful tool for testing the implementation of the likelihood. Since the pseudo-

events are generated by polling the input PDFs, at sufficiently high statistics, statistical

fluctuations in the fit should be insignificant and fitted parameters should match the

generated parameters. At lower statistics, the difference between the generated and

fitted value of a parameter quantifies the fit’s ability to measure a parameter’s true

value. The agreement between the generated and fitted values of parameters is tested

by studying pull distributions. Each entry in the pull distribution is the record of a

pseudo-experiment’s value of

P =
pfit − pinput

σp
(4.44)

where σp is error on the fitted value.

In the high statistics limit, the pull distribution for each parameter in the likeli-

hood function is expected to have a mean of zero (unbiased), and to have a Gaussian

distribution with unit width.

The unbiased, Gaussian nature of pulls distributions in the asymptotic limit was

exhaustively tested for the fit in previous iterations of this analysis [25]. We do not

perform a full re-validation, but we do extensively test the novel extensions to the

likelihood, namely the f0/non-resononant K
+K− S-wave contribution.

We generate ensembles of 500 pseudo-experiments, each with 100,000 signal events.

All of the fit parameters are generated at their fitted value on data, with the exception

of the K+K− S-wave fraction and phase. These are generated for an array of values:

S-wave fractions of 5%, 10%, 25% and 50%, and S-wave phases of 0, π/4, π/2 and 3π/4.

βs and ∆Γ were generated at the standard model values of 0.02 rad and 0.096 ps−1,

respectively.

An example of the pull distributions for the fit parameters of interest is shown

in Fig. 4.16-4.18. The input values for these pseudo-experiments were βs=0.02 and

∆Γ=0.096, S-wave fraction of 25%, and S-wave phase of 0.

The distributions are generally Gaussian and unbiased, with the exception of the

distributions for the phases φ||, φ⊥ and δS . However, the deviations from unit width,

unbiased pulls is small enough that this effect is considered to be a statistical effect

that should vanish for pseudo-experiments with a suitably high number of signal events.
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aswave_p
Entries  500

Mean   -0.01748

RMS    0.9882

 / ndf 2χ  29.75 / 28

Constant  2.33± 39.63 

Mean      0.04440± -0.01823 

Sigma     0.035± 0.945 

-4 -2 0 2 4
0

10

20

30

40

50

60

aswave_p
Entries  500

Mean   -0.01748

RMS    0.9882

 / ndf 2χ  29.75 / 28

Constant  2.33± 39.63 

Mean      0.04440± -0.01823 

Sigma     0.035± 0.945 

alphacpodd_p
Entries  500

Mean   -0.07239

RMS    0.9923

 / ndf 2χ  35.86 / 26

Constant  2.35± 38.66 

Mean      0.04618± -0.08498 

Sigma     0.040± 0.964 

-4 -2 0 2 4
0

10

20

30

40

50

60

alphacpodd_p
Entries  500

Mean   -0.07239

RMS    0.9923

 / ndf 2χ  35.86 / 26

Constant  2.35± 38.66 

Mean      0.04618± -0.08498 

Sigma     0.040± 0.964 

alphapara_p
Entries  500

Mean   0.05488

RMS    0.9657

 / ndf 2χ  16.79 / 25

Constant  2.37± 40.46 

Mean      0.04494± 0.02726 

Sigma     0.037± 0.957 

-4 -2 0 2 4
0

10

20

30

40

50

alphapara_p
Entries  500

Mean   0.05488

RMS    0.9657

 / ndf 2χ  16.79 / 25

Constant  2.37± 40.46 

Mean      0.04494± 0.02726 

Sigma     0.037± 0.957 

Figure 4.16: Pull distributions for 500 high statistics pseudo-experiments for the S-wave

fraction (left), αCPodd (center), and α|| (right).
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Figure 4.17: Pull distributions for 500 high statistics pseudo-experiments for βs (left),

∆Γ (center), and ct (right).
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Figure 4.18: Pull distributions for 500 high statistics pseudo-experiments for φ|| (left),

φ⊥ (center), and δS (right).
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It is not the sort of behavior indicative of a problem with the implementation of the

likelihood.

We record the pulls means and widths for the parameters of greatest interest, the

S-wave fraction and phase, in Tables 4.4-4.7. The pulls for the S-wave fraction are

unbiased and of unit width for all input values of the fraction and phase. The pulls

for the S-wave phase are biased for some input values. However, the size of the biases,

though statistically significant, are small in their absolute magnitude, on order of 0.005.

fsw Mean 5% 10% 25% 50%

0 0.22 ± 0.06 0.13 ± 0.05 −0.02 ± 0.04 −0.05± 0.05

π/4 −0.09± 0.11 −0.09 ± 0.06 −0.02 ± 0.05 −0.06± 0.05

π/2 −0.11± 0.08 −0.08 ± 0.05 −0.08 ± 0.04 −0.10± 0.05

3π/4 0.02 ± 0.11 −0.07 ± 0.04 −0.15 ± 0.05 −0.09± 0.05

Table 4.4: Mean of the S -wave fraction pull.

fsw Width 5% 10% 25% 50%

0 0.83 ± 0.05 0.87 ± 0.04 0.95 ± 0.03 0.99 ± 0.04

π/4 1.01 ± 0.13 0.93 ± 0.06 0.97 ± 0.04 1.02 ± 0.04

π/2 0.97 ± 0.09 0.91 ± 0.04 0.95 ± 0.03 0.99 ± 0.04

3π/4 0.91 ± 0.11 0.89 ± 0.03 0.95 ± 0.04 1.01 ± 0.04

Table 4.5: Width of the S -wave fraction pull.

δS Mean 5% 10% 25% 50%

0 0.10 ± 0.06 0.18 ± 0.05 0.42 ± 0.05 −0.47 ± 0.04

π/4 0.14 ± 0.10 0.24 ± 0.05 0.25 ± 0.04 0.27 ± 0.04

π/2 −0.06 ± 0.06 0.04 ± 0.04 −0.03± 0.04 −0.05 ± 0.05

3π/4 −0.19 ± 0.11 −0.21 ± 0.05 −0.31± 0.04 −0.28 ± 0.04

Table 4.6: Mean of the S -wave relative phase pull.

The fit was also tested for statistics corresponding to the 5.2 fb−1 data set, ∼6500

signal events, and non-standard model βs and ∆Γ. Toys were generated with βs of

0.25 and 0.50. ∆Γ was generated according to ∆Γ = Γ12 cos(2βs). Input values of the

S-wave phase and fraction for these pseudo-experiments were π/2 and 25%. The pull
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4.4 Unbinned maximum likelihood fit

δS Width 5% 10% 25% 50%

0 0.87 ± 0.06 0.91 ± 0.04 1.01 ± 0.04 0.94 ± 0.03

π/4 0.96 ± 0.09 0.86 ± 0.04 0.92 ± 0.03 0.93 ± 0.04

π/2 0.80 ± 0.05 0.87 ± 0.03 0.92 ± 0.04 0.97 ± 0.04

3π/4 0.98 ± 0.11 0.89 ± 0.04 0.86 ± 0.03 0.82 ± 0.03

Table 4.7: Width of the S -wave relative phase pull.

distributions are given in Appendix C. Their behavior is similar to the that of the pulls

generated with 100,000 signal events at the standard model point.

4.4.7 Fit Projections

Fit projections for the proper decay time and proper decay time errors are shown in

Figs. 4.19 and 4.20. All fit parameters, other than the proper time or proper time errors,

have been integrated over, in order to examine agreement between the data and the

fit function for the parameters of interest. The good agreement between the data and

the fit projections validates our parameterization of both the signal and background

distributions and their errors.
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Figure 4.19: Proper decay time fit projections for B0
s signal and background regions.

Fit projections for the transversity angles cos θ, φ, and cosψ in the signal and

side-band regions are shown in Fig. 4.21 and Fig. 4.22.
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Figure 4.20: Proper decay time error fit projections for B0
s signal and background regions.
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Figure 4.21: Fit projections for transversity angles for side-band subtracted signal.
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Figure 4.22: Fit projections for transversity angles in background region.
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Chapter 5

Results

5.1 KK invariant mass fit

In order to increase confidence in the ability of the unbinned maximum likelihood fit

to determine the fraction of f0/non-resonant K
+K−, we perform a binned mass fit of

the K+K− invariant mass to extract fswave. To accomplish this, we use bstntuples

with a loose selection on the φ mass window. These ntuples were only produced for

3.8 fb−1 of data. The φ mass window is [0.98, 1.20] GeV/c2, compared to the window

[1.009, 1.028] GeV/c2 typically used in this analysis. The loose selection allows much

more f0/non-resonant K
+K− to be retained. Since the expected contribution is small,

it is advantageous to make the selection as loose as possible to retain a contribution

that is large enough to fit.

The wide φ mass window introduces a complication in that it increases the amount

of non-combinatorial physics background retained, in the form of a B0 reflection. B0

reflections refer to B0 → J/ψK∗0 events where the pion from the K∗0 decay is misiden-

tified as a kaon in the reconstruction of the B0
s → J/ψφ final state. The event is mis-

reconstructed as a B0
s , but the invariant mass distribution of the B0

s and φ is distorted

by assigning the kaon mass to the pion. Several other reflections are also allowed, but

their fractions are negligible for this selection.

Fig. 5.1 shows the fit to the B0
s mass peak, using the wide KK mass window. The

B0 reflection is modeled using inclusive B0 → J/ψX Monte Carlo. The fraction of B0

reflection in the KK mass distribution is fixed based on the fraction of the B0 reflection

relative to the B0
s peak as determined from the fit in Fig. 5.1.
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Figure 5.1: Binned mass fit of B0
s for wide KK mass window, with B0 reflection.

The φ mass peak is modeled using evtgen fully reconstructed Monte Carlo. The

Monte Carlo includes the effect of mass resolution. The background is modeled using

the B0
s mass sidebands. The f0 and non-resonant K+K− states are modeled with a

flat line shape. This assumption can be justified in both the wide KK mass window,

and the narrow mass window used in the main fit. The non-resonant K+K− state has

a flat shape by definition, and the shape of the f0 can be estimated from an analytic

function, as shown in Fig. 5.2 and 5.3 for the wide and narrow KK mass window. Since

only the tail of the f0 resonance appears under the φ peak, the assumption of a flat

f0 shape is reasonable as well. The variation of the phase across the φ mass range is

also shown. For the narrow KK mass window, the phase very slowly increasing. This

justifies our treatment of δS as flat across the φ resonance in the main fit.

The fit of theK+K− invariant mass distribution, includingB0 reflection, is shown in

Fig. 5.4. The f0/non-resonantK
+K− fraction was floated in the fit, but no contribution

was found. From this study, we conclude that the f0/non-resonantK
+K− contributions

under the φ mass peak are small. The distribution can be modeled successfully using

only resonant K+K−, combinatorial background, and B0 reflection.
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5.1 KK invariant mass fit
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Figure 5.2: In red, f0 line shape (left) and phase shape (right) for wide KK mass window.

In blue, φ line shape and phase shape.
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Figure 5.3: f0 line shape (left) and phase shape (right) for narrow KK mass window. In

blue, φ line shape and phase shape.
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5. RESULTS
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Figure 5.4: Binned mass fit of K+K− invariant mass distribution for wide KK mass

window, including B0 reflection.
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5.2 Point estimates

5.2 Point estimates

In an ideal scenario, we would be able to use the unbinned maximum likelihood fit to

determine a precise value for βs and any other fit parameters of interest. The statistical

power of our data sample, though, is limited, and pseudo-experiments generated with

statistics corresponding to our data sample show substantial biases in the pull distribu-

tions for βs and other parameters. The pull distributions and residuals (pfit − pinput)

are shown in Fig. 5.5-5.7. These biases are not well understood, and thus we choose

to quote confidence regions rather than point estimates (specific values with errors for

parameters of interest).

However, the tagged fit with the simplifying assumption of CP violation fixed to

zero has also been studied. The fit results on data, with βs fixed to the zero, are

shown in Table 5.1. For this fit, the pulls for many of the fit parameters are well-

behaved, making it possible to quote point estimates. We review the pull studies that

show which parameters can be assigned a point estimate, and the determination of

systematic errors.

5.2.1 Pull studies for tagged fit at SM point

To test the behavior of the likelihood in our statistical regime, we generate pseudo-

experiments and study the pull distributions of fit parameters for which we would like

to obtain point estimates. For the sake of simplicity, we could use the fitted values

of parameters from the data fit to generate the pseudo-experiments. This method

has the draw-back that it does not probe the full parameter space. To conservatively

determine the behavior of a parameter’s pull, we must probe its full parameter space,

including possibly problematic extreme values of the parameter. We accomplish this

by randomizing the generated values for the parameters within a broad range. The

ranges the parameters are randomized within are shown in Table 5.2.

Randomization is only done for parameters that have well-behaved non-randomized

pulls. In the case of the strong phases, the pulls are biased when the pseudo-experiments

are generated with the fitted values for data, but not at other points in their range.

Randomizing the inputs in this case could make the biases less apparent, so we only

generated at the fitted data values for the strong phases. The other parameters in the
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Figure 5.5: Pulls (top) and residuals (bottom) for cτ and ∆Γ, with βs floating in fit.
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5.2 Point estimates
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Figure 5.6: Pulls (top) and residuals (bottom) for αCPodd and α||, with βs floating in fit.
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5. RESULTS

Parameter Value

∆Γ 0.075 ± 0.035

φ|| 3.08 ± 0.63

φ⊥ 2.95 ± 0.64

αCPodd 0.266 ± 0.014

α|| 0.306 ± 0.015

fswave 0.019 ± 0.027

δS 1.37 ± 0.77

m 5.37 ± 0.00

ms 1.73 ± 0.02

N 6.5e+03 ± 85

Bm -2.3 ± 0.6

fs 0.181 ± 0.002

S+

D
0.92 ± 0.09

S−
D

1.12 ± 0.09

SD 0.901 ± 0.175

ǫs(OST ) 0.943 ± 0.003

ǫs(SSKT ) 0.522 ± 0.007

ǫb(OST ) 0.87 ± 0.00

ǫb(SSKT ) 0.719 ± 0.003

A+(OST ) 0.495 ± 0.003

A+(SSKT ) 0.496 ± 0.003

cτ 0.0459 ± 0.0008

∆ms 17.7 ± 0.1

fp 0.884 ± 0.005

f− 0.173 ± 0.034

f+ 0.662 ± 0.045

λ− 0.038 ± 0.004

λ+ 0.041 ± 0.004

λ++ 0.011 ± 0.001

sf1 1.27 ± 0.01

sf2 3.32 ± 0.19

resfrac 0.882 ± 0.012

φ 0.139 ± 0.008

cosψ 0.004 ± 0.020

cos θ 0.161 ± 0.018

Table 5.1: Fit results for unbinned maximum likelihood fit with βs fixed to 0.0 (the SM

point).
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Figure 5.7: Pulls (top) and residuals (bottom) for φ||, φ⊥ and βs with βs floating in fit.

fit, for which we are not interested in quoting point estimates, are generated with the

fitted values from data.

The pulls from ∼1000 pseudo-experiments with the number of signal events fitted

from the data, and randomized inputs for cτ , ∆Γ, and the transversity amplitudes are

shown in Fig. 5.8-5.10. The residuals, pfit − pinput are also shown. The pull means

and widths are shown in Table 5.3. The pulls are Gaussian distributions with unit

width, except in the case of φ||. The pathology of the φ|| pull distribution has been

investigated. It is due to the fact that φ|| has a symmetry axis at π, and the fitted value

Parameter Minimum Maximum

cτ 400µm 500µm

∆Γ 0.0ps−1 0.6ps−1

αCPodd 0.0% 90.0%

α‖ 0.0% 90.0%

Table 5.2: Ranges for randomized inputs for generating pseudo-experiments.
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5. RESULTS

Parameter Pull mean Pull σ

cτ 0.05 ± 0.03 0.99 ± 0.03

∆Γ -0.08 ± 0.03 1.00 ± 0.03

αCPodd -0.15 ± 0.03 0.90 ± 0.02

α|| 0.15 ± 0.03 0.88 ± 0.03

φ|| non-Gaussian

φ⊥ 0.01 ± 0.02 0.87 ± 0.03

Table 5.3: Pulls means and width for fit with βs fixed to zero.

in the data is close to the symmetry axis. Pseudo-experiments are therefore generated

close to π, and the fit tends to have difficulty distinguishing between the φ|| solutions

above and below π, and will in many cases simply return a fitted value of exactly π, the

median value between the two solutions. This causes a large a spike in the pfit− pinput

distribution, which in turn makes the pull non-Gaussian.

Due to the non-Gaussian nature of the pull, we do not quote a point estimate for φ||.

The pulls for cτ , ∆Γ, the transversity amplitudes, and φ⊥ are well-behaved Gaussians,

allowing us to quote point estimates for these parameters. From Table 5.3, it is evident

that ∆Γ and the transversity amplitudes have greater than 2σ biases. These biases

must be accounted for by subtracting them off the quoted value of the parameters.

5.2.2 Systematics

After assessing which parameters we can quote point estimates for, it is necessary to as-

sess the relevant systematic uncertainties. This is again done using pseudo-experiments.

We fit 1000 pseudo-experiments generated with βs fixed to zero, with and without sys-

tematic variations. The pseudo-experiments are fit using the default fit, without mod-

ifications. The systematic variations are made one by one. The difference between the

mean of the residual (pfit − pinput) without systematics and the mean of the residual

with systematics is calculated, and assigned as the systematic.

• Signal angular efficiency

The systematic uncertainty associated with the modeling of angular efficiency for

signal events is calculated using histograms of realistic Monte Carlo to generate

the angular efficiency in pseudo-experiments, rather than using the standard fit
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Figure 5.8: Pulls (top) and residuals (bottom) for cτ and ∆Γ, with βs fixed to zero.
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5. RESULTS
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Figure 5.9: Pulls (top) and residuals (bottom) for αCPodd and α||, with βs fixed to zero.
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Figure 5.10: Pulls (top) and residuals (bottom) for φ|| and φ⊥, with βs fixed to zero.
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parameterization as an expansion of spherical harmonics. The effect is evaluated

both for re-weighted and non-reweighted Monte Carlo.

• Signal mass model

The systematic uncertainty associated with the signal mass model is calculated

by fitting the B0
s signal in the data with two Gaussians, and then generating

pseudo-experiments with the Gaussian widths and scale factor between the two

Gaussians found in the data. The pseudo-experiments are then fit using the usual

single Gaussian mass model.

• Background mass model

The systematic uncertainty associated with the background mass model is calcu-

lated by fitting the B0
s sideband invariant mass distribution in data with a second

order polynomial, and then generating pseudo-experiments with according to the

fitted second order polynomial. The pseudo-experiments are then fit with the

usual first order polynomial.

• Lifetime resolution model

The systematic uncertainty associated with the lifetime resolution model (for

the signal) is calculated by generating pseudo-experiments with a three Gaussian

resolution model. Two of the Gaussian widths and scale factors are taken from

the data, and the third is assigned an intermediate width between the two. The

pseudo-experiments are then fit with the usual two Gaussian resolution model.

• Background lifetime model

The systematic uncertainty associated with the background lifetime model is

assessed by generating pseudo-experiments using lifetime distributions from the

B0
s invariant mass side bands.

• Angular background model

The systematic uncertainty associated with the background angular model is

assessed by generating pseudo-experiments using angular distributions from the

B0
s invariant mass side bands. Additionally, the background angles are assumed to

be independent in the likelihood, but small correlations between cos(θ) and φ were
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5.2 Point estimates

observed. In addition, correlations between the angles and σ(cτ) were observed.

The effect of the correlation between cos(θ) and φ is assessed by binning φ in

three bins of cos(θ). Then φ is generated from the histograms corresponding to

the generated value of cos(θ). The correlation between the angles and σ(cτ) are

handled similarly, with the angles binned in σ(cτ). The generated values of the

angles are sample from the bin dictated by the generated value of σ(cτ).

• B0 crossfeed

The systematic effect of B0 reflections from mis-reconstructed B0 → J/ψK∗0

decays is handled by generating pseudo-experiments with some B0 reflection in-

cluded. The fraction of B0 reflection is calculated to be 2.2% from B0 → J/ψK∗0

Monte Carlo with our selection requirements applied.

• SVX alignment

In accordance with other lifetime measurements at CDF, we assign a 2µm sys-

tematic uncertainty to the B0
s lifetime measurement to account for SVX mis-

alignment. We generate pseudo-experiments with the lifetime varied by ±2µm to

assign an SVX alignment uncertainty to the other parameters.

• Mass errors

The systematic uncertainty associated with the modeling of mass errors is assessed

by generating pseudo-experiments with the mass errors taken from the sideband

subtracted B0
s signal region for signal events, and the B0

s sideband region for

background events. The pseudo-experiments are fit with the default assumption

that the signal and background mass error distributions are identical.

• cτ errors

The systematic uncertainty associated with the modeling of cτ errors is assessed

by generating pseudo-experiments with the cτ errors taken from the sideband

subtracted B0
s signal region for signal events, and the B0

s sideband region for

background events. A small observed correlated between σ(cτ) and the mass is

assigned a systematic uncertainty by using two cτ histograms for generation, one

for the upper and one for the lower B0
s sideband. If the generated mass falls in
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the lower sideband, the latter histogram is sampled, and if the generated mass

falls in the upper sideband, the former is sampled.

The total systematic uncertainty for each parameter for which a point estimate is

being quoted is shown in Table 5.4. The final results, with systematic uncertainties

assigned, are

cτs = 458.6 ± 7.5 (stat.) ± 3.6 (syst.) µm

∆Γ = 0.075 ± 0.035 (stat.) ± 0.010 (syst.) ps−1

|A||(0)|2 = 0.231 ± 0.014 (stat) ± 0.015 (syst.)

|A0(0)|2 = 0.524 ± 0.013 (stat) ± 0.015 (syst.)

φ⊥ = 2.95 ± 0.64 (stat) ± 0.07 (syst.). (5.1)

The measurements of cτ and ∆Γ are precise and in good agreement with the world

average. The transversity amplitudes are in good agreement with those measured in

the B0 system.

5.3 Likelihood scans

We now move to fitting with βs floating in the fit, rather than being fixed to zero. The

fit results on data for the unbinned maximum likelihood fit with all parameters floating

is shown are Table 5.5.

Biases are observed in the pulls for pseudo-experiments fit with βs floating. Rather

than quoting point estimates, we produce a confidence region in the βs −∆Γ plane. A

likelihood scan is produced by fixing βs and ∆Γ for each point in a grid, and minimizing

the remaining fit parameters. In previous iterations of the analysis, an exact symmetry

existed in the likelihood that we attempted to remove by restricting the strong phase

φ|| to be between 0 and π, or between π and 2π. A local minimum would still exist

in addition to the global one in both these cases. This was due to an approximate

symmetry in the likelihood which produced the local minimum. We accounted for this

effect by symmetrizing the contour, reflecting the contour over the symmetry axes and

taking the deeper of the two minima at each point on the grid.
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5.3 Likelihood scans

Systematic ∆Γ cτs |A||(0)|2 |A0(0)|2 φ⊥

Signal efficiency:

Parameterization 0.0024 0.96 0.0076 0.008 0.016

MC reweighting 0.0008 0.94 0.0129 0.0129 0.022

Signal mass model 0.0013 0.26 0.0009 0.0011 0.009

Background mass model 0.0009 1.4 0.0004 0.0005 0.004

Resolution model 0.0004 0.69 0.0002 0.0003 0.022

Background lifetime model 0.0036 2.0 0.0007 0.0011 0.058

Background angular distribution:

Parameterization 0.0002 0.02 0.0001 0.0001 0.001

σ(cτ) correlation 0.0002 0.14 0.0007 0.0007 0.006

Non-factorization 0.0001 0.06 0.0004 0.0004 0.003

B0 → JψK∗ crossfeed 0.0014 0.24 0.0007 0.0010 0.006

SVX alignment 0.0006 2.0 0.0001 0.0002 0.002

Mass error 0.0001 0.58 0.0004 0.0004 0.002

cτ error 0.0012 0.17 0.0005 0.0007 0.013

Pull bias 0.0028 0.0013 0.0021

Totals 0.01 3.6 0.015 0.015 0.07

Table 5.4: Total systematic uncertainties for each parameter where a point estimate is

determined.

With the inclusion of the S -wave in the fit, the exact symmetry under ∆Γ to -∆Γ

and φ|| to 2π-φ|| is broken. We find a slightly deeper minimum for the case where ∆Γ

is negative and φ|| is greater than π. The difference between the two minima is not

significant (0.04 units in the −2 logL), so we cannot claim to resolve the ambiguity

between the minima.

With the exact symmetry broken, we are no longer able to symmetrize the contour

by hand. Instead we run the likelihood scan with φ|| restricted between 0 and π and

between π and 2π. At each point in the βs −∆Γ plane, we take the deeper of the two

−2 logL’s corresponding to the different φ|| ranges. This procedure guarantees that

we use the global, not the local minimum at each grid point. The contour is shown in

Fig. 5.11.

One dimensional likelihood scans for βs, ∆Γ, cτ , φ||, φ⊥ and the f0/non-resonant
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Parameter Value

βs 0.244 ± 0.132

∆Γ 0.097 ± 0.035

φ|| 3.02 ± 0.47

φ⊥ 3.03 ± 0.52

αCPodd 0.264 ± 0.014

α|| 0.307 ± 0.015

fswave 0.018 ± 0.023

δS 1.5 ± 0.6

m 5.37 ± 0.00

ms 1.73 ± 0.02

N 6.5e+03 ± 85

Bm -2.3 ± 0.6

fs 0.181 ± 0.002

S+

D
0.92 ± 0.08

S−
D

1.12 ± 0.09

SD 0.886 ± 0.174

ǫs(OST ) 0.943 ± 0.003

ǫs(SSKT ) 0.522 ± 0.007

ǫb(OST ) 0.870 ± 0.002

ǫb(SSKT ) 0.719 ± 0.003

A+(OST ) 0.495 ± 0.003

A+(SSKT ) 0.496 ± 0.003

cτ 0.0459 ± 0.0007

∆ms 17.7 ± 0.1

fp 0.884 ± 0.005

f− 0.172 ± 0.033

f+ 0.661 ± 0.045

λ− 0.038 ± 0.004

λ+ 0.041 ± 0.004

λ++ 0.011 ± 0.001

sf1 1.27 ± 0.01

sf2 3.32 ± 0.19

resfrac 0.882 ± 0.012

φ 0.139 ± 0.008

cosψ 0.004 ± 0.020

cos θ 0.161 ± 0.018

Table 5.5: Fit results for unbinned maximum likelihood fit with βs floating.
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5.4 Fit for Direct CP violation

K+K− fraction fraction and phase are shown in Figs. 5.11-5.19. Fig. 5.18 zooms in on

the area around the minimum in the f0/non-resonant K
+K− fraction likelihood scan.

The S-wave fraction is observed to be small; consistent with zero. Its range is [0, 6.7]

at the 95% confidence level. It is clear from the likelihood scan for δS that the fit does

not have sensitivity to this parameter; the minimum for δS is extremely shallow.

In the likelihood scan, the 68% and 95% confidence levels (CL) are always shown

in blue and red, respectively. Confidence level refers to the number of trials, out of one

hundred, for which one expects a condition to be satisfied. In our case, we expect the

region inside the 95% CL contour to have at least a 95% chance of enclosing the true βs

and ∆Γ. However, our likelihood is complicated by pathological behaviors. As stated

before, pull distributions for the fit with βs floating are not well-behaved. As one can

see from the βs likelihood scan in Fig. 5.12, the minima are not Gaussian. Thus, the

canonical values that one must go up from the minimum in −2 logL for the 68% and

95% confidence levels in fact no longer guarantee 68% and 95% confidence. The non-

Gaussianity must be accounted for using a coverage adjustment procedure described in

the next section, to find the true 68% and 95% confidence levels.

The contour for the fit for direct CP violation is shown in Fig. 5.20. The likelihood

profile is consistent with |λ|=1 within 2σ. The results are consistent with no direct

CP violation, or, in the case of a more plausible source of asymmetry, no asymmetry is

evident in the flavoring tagging. The cos 2βs-sin 2βs contours are also in good agreement

with the contours in Fig. 5.11.

5.4 Fit for Direct CP violation

We check the robustness of our result with an independent fit which allows cos(2βs)

and sin(2βs) to float separately. We do not impose the requirement that |λf | = 1,

which allows for the possibility of measuring non-zero direct CP violation, either with

|Āf/Af | 6=1, or |p/q| 6=1. Although CP is not expected to be violated directly in this

system, the fit serves as a useful cross check of the default fit, and also as a cross check

of the tagging calibration. Mis-calibration of the tagging algorithms would mimic an

asymmetry in the B0
s decay rate that would cause |λf | 6=1. If we observe signs of direct

CP violation, the most probable scenario is that there is an asymmetry in a tagger

that has not been accounted for properly.
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Figure 5.11: Likelihood scan for βs and ∆Γ. The dotted lines are the symmetry axes for

the strong phases.
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Figure 5.12: Likelihood scan for βs.
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Figure 5.13: Likelihood scan for ∆Γ.
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Figure 5.14: Likelihood scan for ct.
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Figure 5.15: Likelihood scan for φ||.
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Figure 5.16: Likelihood scan for φ⊥.
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Figure 5.17: Likelihood scan for f0/non-resonant K
+K− fraction.
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Figure 5.19: Likelihood scan for δS .

Allowing sin(2βs) and cos(2βs) independence from each other changes both the

time-dependent terms and the analytic normalization of the B0
s and B̄0

s PDFs. Note

that we do not use the version of the PDF that includes the contributions of f0 and

non-resonant K+K−. The normalization and time-dependence allowing direct CP

violation can be obtained from a straight-forward expansion of terms containing βs to

use sin(2βs) and cos(2βs) instead. We test the implementation of the likelihood using

pseudo-experiments. The tests are described in Appendix D, and the implementation

was found to be valid.

In order to address concerns that the inclusion of the f0/non-resonant K
+K− con-

tribution substantially alters the shape of the βs − ∆Γ contour, rendering previous

measurements invalid, we revert to the original likelihood. The overlay between the

βs − ∆Γ contours with the original and updated likelihoods is shown in Fig. 5.21.

Clearly, the effect of adding the f0/non-resonant K
+K− contribution is marginal, as

expected, given that the fitted fraction fswave is consistent with zero.
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5.4.1 Coverage adjustment

We use a likelihood ratio ordering procedure to ensure that our βs − ∆Γ contours

do not undercover and account for the non-Gaussian errors that we observe with the

present statistics [67]. We also calculate a p-value to determine the probability that

our observed measurement of βs is a fluctuation from the standard model expectation,

βs=0.02.

We generate 1000 toys at the standard model point in the βs−∆Γ plane (βs=0.02,

∆Γ=0.096). The toys are fit with all fit parameters including βs and ∆Γ floating, and

then fit a second time with βs and ∆Γ fixed to their standard model values. For each

toy we form a likelihood ratio by dividing the −2 logL returned by the first fit by the

one returned by the second fit, resulting in

LR = 2 log
L(βs,∆Γ, ~ξ)

L(~ξ)
, (5.2)

where ~ξ denotes the set of fit parameters, except βs and ∆Γ. The fit parameters in ~ξ

are often referred to as “nuisance” parameters.

The distribution of likelihood ratios for the toys is integrated and normalized. Tak-

ing the log of the integrated likelihood ratio distribution, we obtain the distribution

of 1 - (Confidence Level), as shown in the solid black line in Fig. 5.22. From this

distribution, it is possible to determine the “up” values necessary to guarantee correct

coverage in a non-Gaussian regime at the 68 and 95% confidence levels. This is achieved

by finding the LR values that map to 1 − 0.68 = 0.32 and 1 − 0.95 = 0.05 in Fig. 5.22.

These LRs are the up values, which give the number of units one must go up from the

minimum at zero in the βs −∆Γ likelihood profile to find the 68% and 95% confidence

regions. The ideal case of Gaussian errors is shown in green.

The p-value is the probability that our measurement of βs is a fluctuation from a

standard model true value. It is calculated by comparing the LR for data to the LR

for each toy. The p-value is the number of toys whose LR exceeds the data value of LR

divided by the total number of toys. We calculate a p-value of 0.27. This corresponds

to “up” values of 2.85 (68% CL) and 7.34 (95% CL).

In order to guarantee coverage over a range of possible values of nuisance parame-

ters, an ensemble of sixteen “alternate” universes is generated. Each universe is pro-
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duced by generating toys with nuisance parameters randomized uniformly within ±5σ

of their measured value on data. The only exception is the phase δS , which is generated

flat between 0 and 2π. Since the f0/non-resonant K
+K− fraction is consistent with

zero, we lack sensitivity to the associated phase and choose to vary it over the full range

possible.

To determine the final coverage adjustment, we generate 1000 toys for each of the

sixteen alternative universes. The same likelihood ratio procedure described above is

performed on each universe, and the most conservative p-value and “up” values are

taken. The colored, dashed lines in Fig. 5.22 show the log of the integrated likelihood

ratio distribution for the sixteen alternative universes. After adjusting the coverage

to take into account the “worst” (most conservative) universes, we obtain a p-value of

0.44 and “up” values of 4.27 (68% CL)and 9.10 (95% CL).

The same coverage adjustment procedure is carried out for the 1D βs likelihood

profile. The βs profile coverage adjustment has the modification that ∆Γ is randomized

in pseudo-experiment generation and treated analogously to any other fit parameter.

For the 1D βs case, using 1000 toys, we find a p-value of 0.14 for the non-Gaussian

error adjustment. The “up” values are 1.68 (68% CL) and 5.37 (95% CL). The solid

black line in Fig. 5.23 shows the (1 - CL) distribution.

We use 1000 toys per alternative universe for the coverage adjustment in the 1D

case. Considering the worst case alternative universe from Fig. 5.23, we obtain a p-value

of 0.31 and “up” values of 2.93 (68% CL) and 7.73 (95% CL).

5.4.2 Coverage adjusted contours

We present the coverage adjusted contours in this section. The βs − ∆Γ scan after

the first coverage adjustment is shown in Fig. 5.24. The final, fully adjusted contour

is shown in Fig. 5.25. In both plots, the standard model prediction is shown as black

marker. For the final contour, the standard model prediction is partially included,

partially excluded at the 68% confidence level.

The one dimensional βs confidence interval after the initial coverage adjustment is

shown in Fig. 5.26. The final βs confidence interval, after full adjustment, is shown in

Fig. 5.27.
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Figure 5.22: 1-CL distribution for βs-∆Γ scan.
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Figure 5.23: 1-CL distribution for βs scan.
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Figure 5.24: βs −∆Γ confidence region after initial coverage adjustment.
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Figure 5.25: βs −∆Γ confidence region after final coverage adjustment.
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Figure 5.26: βs confidence interval after initial coverage adjustment.
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Figure 5.27: βs confidence interval after final coverage adjustment.
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5.4 Fit for Direct CP violation

Based on the one-dimensional confidence interval, βs has the range [0.02, 0.52] U

[1.08, 1.55] at the 68% confidence level, and [-0.13, 0.68] U [0.89, pi/2] U [-pi/2, -1.44]

at the 95% confidence level.
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Chapter 6

Conclusions

In this thesis, we presented the latest measurement of the CP violating phase βs, using

Bs → J/ψφ decays. We performed a time-dependent, flavor-tagged angular analysis,

and extract the parameters of interest with an unbinned likelihood fit. The signal se-

lection was optimized in a novel way which used pseudo-experiments to maximize the

sensitivity to βs. We measured several parameters related to the CP violating phase,

including the B0
s lifetime, the decay width difference ∆Γ between the heavy and light

B0
s mass eigenstates, the transversity amplitudes |A||| and |A⊥|, and the strong phase

φ⊥. The measurements for cτ and ∆Γ are in good agreement with the PDG world

averages, and are the world’s most precise measurements on a single decay mode. The

measurements of the transversity amplitudes are consistent with previous measure-

ments in the B0
s → J/ψφ system. The transversity amplitudes are also consistent with

those measured using B0 → J/ψK0
S decays, whose final state angular behavior is ex-

pected to be similar to the J/ψφ system [25]. For the first time, we incorporate in

the likelihood the possibility of contributions to the final state from B0
s → J/ψf0 and

B0
s → J/ψK+K− decays. We measure this contribution to be less than 6.7% at the

95% confidence level.

The probability that the observed confidence regions in the βs − ∆Γ plane are

fluctuations from the standard model point is 44%, compared to 7% for the most recent

iteration of the analysis. Our consistency with the standard model prediction is much

better than it has been for previous iterations of the analysis [68]. This effect does not

appear to be due to the inclusion of the f0/non-resonant K
+K− contributions, but

simply the effect of increasing statistics and decreasing the errors on βs.
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6. CONCLUSIONS

We also presented a complementary, independent fit that allowed for the possibility

of direct CP violation. The results of this fit were consistent with the theoretical

prediction of no direct CP violation in the B0
s → J/ψφ system. The confidence levels

also were well-consistent with the main fit, increasing our confidence in the robustness

of our result.

The measurements presented in this thesis are still statistically dominated. Thus,

further measurements on larger data samples are warranted in the future. This mea-

surement will continue to play an important role in the study of heavy flavor physics,

both in the final years of Tevatron operation, and in the first years of running at the

Large Hadron Collider.
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Appendix A

Decay Rates, With Full Angular

Dependence

We expand Eqs. 1.54 and 1.55 to show the full angular dependence of the B0
s and

B̄0
s probability densities. We first expand the time-independent cross products for the

transversity amplitudes at t = 0 with the unit vector n̂ to make the angular dependence

explicit. The expanded terms are:

|A+ × n̂|2 = |A0(0)|2 cos2 ψ(cos2 θ + sin2 θ sin2 φ) +
1

2
|A||(0)|2 sin2 ψ(cos2 θ + sin2 θ cos2 φ)

+
1

2
√
2
|A0(0)||A||(0)| cos φ|| sin 2ψ sin2 θ sin 2φ, (A.1)

|A− × n̂|2 =
1

2
|A⊥(0)|2 sin2 ψ sin2 θ, (A.2)

and

(A+ × n̂) · (A∗
− × n̂) =

i

4
|A||(0)||A⊥(0)|ei(φ||−φ⊥) sin2 ψ sin 2θ sinφ

+
i

4
√
2
|A0(0)||A⊥(0)|e−iφ⊥ sin 2ψ sin 2θ cosφ. (A.3)

We define six angular functions
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A. DECAY RATES, WITH FULL ANGULAR DEPENDENCE

g1(~ρ) = cos2 ψ(1 − sin2 θ cos2 φ)

g2(~ρ) =
1

2
sin2 ψ(1 − sin2 θ sin2 φ)

g3(~ρ) =
1

2
sin2 ψ sin2 θ

g4(~ρ) =
1

2
√
2
sin 2ψ sin2 θ sin 2φ

g5(~ρ) = −1

2
sin2 ψ sin 2θ sinφ

g6(~ρ) =
1

2
√
2
sin 2ψ sin 2θ cosφ. (A.4)

The expanded cross products given above, in addition to the angular functions, can

be used to rewrite Eq. 1.54 as

P (t, ~ρ) ∝ |A0(0)|2|f+(t)|2g1(~ρ) + |A||(0)|2|f+(t)|2g2(~ρ) + |A⊥(0)|2|f−(t)|2g3(~ρ)

+ |A0(0)||A||(0)| cos φ|||f+(t)|2g4(~ρ)

+ Re{i|A||(0)||A⊥(0)|ei(φ||−φ⊥)f+(t)f
∗
−(t)}g5(~ρ)

+ Re{i|A0(0)||A⊥(0)|ei(φ⊥)f+(t)f
∗
−(t)}g6(~ρ). (A.5)

We can expand the terms that express the time dependence, and utilize the strong

phases

δ1 = Arg(A∗
||(0)A⊥(0)) = φ⊥ − φ|| (A.6)

δ2 = Arg(A∗
0(0)A⊥(0)) = φ⊥ − φ0 (A.7)

to write the B0
s probability density with both the time and angular dependence made

explicit, and only real, measurable components remaining:
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P (t, ~ρ) ∝ |A0(0)|2e−Γt[cosh
∆Γ

2
t− cos 2βs sinh

∆Γ

2
t− sin 2βs sin∆mst]g1(~ρ)

+ |A||(0)|2e−Γt[cosh
∆Γ

2
t− cos 2βs sinh

∆Γ

2
t− sin 2βs sin∆mst]g2(~ρ)

+ |A⊥(0)|2e−Γt[cosh
∆Γ

2
t+ cos 2βs sinh

∆Γ

2
t+ sin 2βs sin∆mst]g3(~ρ)

+ |A0(0)||A||(0)| cos(δ2 − δ1)e
−Γt ×

[cosh
∆Γ

2
t− cos 2βs sinh

∆Γ

2
t− sin 2βs sin∆mst]g4(~ρ)

+ |A||(0)||A⊥(0)|e−Γt ×

[sin δ1 cos∆mst− cos δ1 cos 2βs sin∆mst+ cos δ1 sin 2βs sinh
∆Γ

2
t]g5(~ρ)

+ |A0(0)||A⊥(0)|e−∆Γt ×

[sin δ2 cos∆mst− cos δ2 cos 2βs sin∆mst+ cos δ2 sin 2βs sinh
∆Γ

2
t]g6(~ρ)

(A.8)

The same algebra can be repeated to arrive at the explicit form of the B̄0
s probability

density:

P̄ (t, ~ρ) ∝ |A0(0)|2e−Γt[cosh
∆Γ

2
t− cos 2βs sinh

∆Γ

2
t+ sin 2βs sin∆mst]g1(~ρ)

+ |A||(0)|2e−Γt[cosh
∆Γ

2
t− cos 2βs sinh

∆Γ

2
t+ sin 2βs sin∆mst]g2(~ρ)

+ |A⊥(0)|2e−Γt[cosh
∆Γ

2
t+ cos 2βs sinh

∆Γ

2
t− sin 2βs sin∆mst]g3(~ρ)

+ |A0(0)||A||(0)| cos(δ2 − δ1)e
−Γt ×

[cosh
∆Γ

2
t− cos 2βs sinh

∆Γ

2
t+ sin 2βs sin∆mst]g4(~ρ)

+ |A||(0)||A⊥(0)|e−Γt ×

[− sin δ1 cos∆mst+ cos δ1 cos 2βs sin∆mst+ cos δ1 sin 2βs sinh
∆Γ

2
t]g5(~ρ)

+ |A0(0)||A⊥(0)|e−Γt ×

[− sin δ2 cos∆mst+ cos δ2 cos 2βs sin∆mst+ cos δ2 sin 2βs sinh
∆Γ

2
t]g6(~ρ).

(A.9)

These fully expanded forms of probability densities match the standard differential

decay rates for decay of a pseudo-scalar particle to two vector particles [11].
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Appendix B

Explicit Description of φ Mass

Line Shape

The function that we use to parameterize the shape of the φ resonance is an asymmetric

relativistic Breit-Wigner with a mass dependent width. The function is as follows:

h(µ) =
µ

µφ
· Γ1 ·

k∗(Bs, µ, J/ψ)

k∗(Bs, µφ, J/ψ)
· 1

(µ2φ − µ2)2 + µ2φ · Γ2
tot

. (B.1)

The k∗ terms give the momentum of a particle with mass µ in the rest frame of the

B0
s , assuming a two body decay in which the other daughter particle is a J/ψ. The

total decay width Γtot is

Γtot = Γ1 + Γ2 + Γ3 (B.2)

where Γ1,Γ2 and Γ3 are the three dominant φ partial decay widths: φ → K+K−,

φ → K0
LK

0
s , and φ → ρπ + π+π−π0, with branching ratios 0.489, 0.342, and 0.153,

respectively. The partial decays widths are defined by

Γ1 = Γφ · 0.489 ·
[

k∗(µ, µK+ , µK+)

k∗(µφ, µK+ , µK+)

]3

· µφ
µ

·
[

1 +R2k∗2(µφ, µK+, µK+)

1 +R2k∗2(µ, µK+ , µK+)

]

Γ2 = Γφ · 0.342 ·
[

k∗(µ, µK0 , µK0)

k∗(µφ, µK0 , µK0)

]3

· µφ
µ

·
[

1 +R2k∗2(µφ, µK0 , µK0)

1 +R2k∗2(µ, µK0 , µK0)

]

Γ3 = Γφ · (1− 0.489 − 0.342), (B.3)
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B. EXPLICIT DESCRIPTION OF φ MASS LINE SHAPE

where Γφ is the φ width (4.26 MeV/c2), R is the Blatt-Weisskopf radius of ∼ 3GeV−1,

which defines the barrier factor associated with a resonance’s potential well. The barrier

factor is determined by the orbital angular momentum of the state.

The analytic function for the φ line shape agrees well with realistic Monte Carlo,

as shown in Fig. B.1.
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Figure B.1: Agreement between analytic description of φ line shape (black) and Monte

Carlo (red).
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Appendix C

Pulls for non-standard model βs

and ∆Γ

We present the pull distributions for pseudo-experiments with realistic statistics (6,500

signal events), and generated at non-standard model values of βs and ∆Γ. All pull

distributions are generated with an f0/non-resonant K
+K− fraction of 25%, and δS of

π/2. Figs. C.1-C.3 give the pulls for pseudo-experiments generated with βs of 0.25 and

∆Γ of 0.08. Figs. C.4-C.6 give the pulls for pseudo-experiments generated with βs of

0.50 and ∆Γ of 0.05.
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Figure C.1: Pulls for fswave (left), αCPodd (center) and α|| (right), generated with

βs=0.25 and ∆Γ=0.08.
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Figure C.2: Pulls for φ|| (left), φ⊥ (center) and δS (right), generated with βs=0.25 and

∆Γ=0.08.
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Figure C.3: Pulls for βs (left), ∆Γ (center) and ct (right), generated with βs=0.25 and

∆Γ=0.08.
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Figure C.4: Pulls for fswave (left), αCPodd (center) and α|| (right), generated with

βs=0.50 and ∆Γ=0.05.
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Figure C.5: Pulls for φ|| (left), φ⊥ (center) and δS (right), generated with βs=0.50 and

∆Γ=0.05.
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Figure C.6: Pulls for βs (left), ∆Γ (center) and ct (right), generated with βs=0.50 and

∆Γ=0.05.
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Appendix D

Direct CP Violation fit validation

We test the fit for direct CP violation in the usual way, using toy Monte Carlo pseudo-

experiments to verify that pull distributions for the fit parameters of interest are Gaus-

sian, with mean of zero and unit width. We check that the fit is unbiased for several

generated values of βs: βs = 0.0, βs = 0.25, βs = π/2. We test the high statistics

limit, using 150,000 signal events per toy, and 1,500 toys for each βs scenario. Pulls

are shown is Figs. D.1-D.9. The pulls are Gaussian, unbiased and unitary in the high

statistics limit, which validates our implementation of the likelihood function.
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Figure D.1: High statistics DCPV fit pulls for ct (left) and ∆Γ (right), generated βs=0.
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Figure D.2: High statistics DCPV fit pulls for φ|| (left) and φ⊥ (right), generated βs=0.
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Figure D.3: High statistics DCPV fit pulls for sin(2βs) (left) and cos(2βs) (right), gen-

erated βs=0.
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Figure D.4: High statistics DCPV fit pulls for ct (left) and ∆Γ (right), generated βs=0.
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Figure D.5: High statistics DCPV fit pulls for φ|| (left) and φ⊥ (right), generated βs=0.
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Figure D.6: High statistics DCPV fit pulls for sin(2βs) (left) and cos(2βs) (right), gen-

erated βs=0.
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Figure D.7: High statistics DCPV fit pulls for ct (left) and ∆Γ (right), generated βs=0.

157

9_backmatter/figures/bp2_phipara_p.eps
9_backmatter/figures/bp2_phiperp_p.eps
9_backmatter/figures/bp2_sin2bp_p.eps
9_backmatter/figures/bp2_cos2bp_p.eps
9_backmatter/figures/bp3_ctau_p.eps
9_backmatter/figures/bp3_deltaG_p.eps


D. DIRECT CP VIOLATION FIT VALIDATION

phipara_p
Entries  1500

Mean   0.02954

RMS    0.9961

 / ndf 2χ   53.5 / 59

Constant  1.92± 59.58 

Mean      0.02624± 0.02205 

Sigma     0.0188± 0.9729 

−4 −2 0 2 40

10

20

30

40

50

60

70
phipara_p

Entries  1500

Mean   0.02954

RMS    0.9961

 / ndf 2χ   53.5 / 59

Constant  1.92± 59.58 

Mean      0.02624± 0.02205 

Sigma     0.0188± 0.9729 

phiperp_p
Entries  1500

Mean   −0.02547

RMS     1.036

 / ndf 2χ  62.01 / 62

Constant  1.99± 57.82 

Mean      0.02669± −0.01643 

Sigma     0.0227± 0.9951 

−4 −2 0 2 40

10

20

30

40

50

60

70

phiperp_p
Entries  1500

Mean   −0.02547

RMS     1.036

 / ndf 2χ  62.01 / 62

Constant  1.99± 57.82 

Mean      0.02669± −0.01643 

Sigma     0.0227± 0.9951 

Figure D.8: High statistics DCPV fit pulls for φ|| (left) and φ⊥ (right), generated βs=0.
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Figure D.9: High statistics DCPV fit pulls for sin(2βs) (left) and cos(2βs) (right), gen-

erated βs=0.
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